Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering
Al-Si-Mg alloy has excellent casting performance due to its high silicon content, but the coarse eutectic silicon phase can lead to a decrease in its mechanical properties. Samples of AlSi10Mg alloy were prepared by using a spark plasma sintering method, and it was found that sintering temperature h...
Gespeichert in:
Veröffentlicht in: | Materials 2023-11, Vol.16 (23), p.7394 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 7394 |
container_title | Materials |
container_volume | 16 |
creator | Rong, Guangfei Xin, Wenjie Zhou, Minxu Ma, Tengfei Wang, Xiaohong Jiang, Xiaoying |
description | Al-Si-Mg alloy has excellent casting performance due to its high silicon content, but the coarse eutectic silicon phase can lead to a decrease in its mechanical properties. Samples of AlSi10Mg alloy were prepared by using a spark plasma sintering method, and it was found that sintering temperature has a significant impact on the grain size, eutectic silicon size and wear and corrosion properties after heat treatment. At a sintering temperature of 525 °C, the alloy exhibits the best wear performance with an average friction coefficient of 0.29. This is attributed to the uniform precipitation of fine eutectic silicon phases, significantly improving wear resistance and establishing adhesive wear as the wear mechanism of AlSi10Mg alloy at room temperature. The electrochemical performance of AlSi10Mg sintered at 500 °C is the best, with I
and E
being 1.33 × 10
A·cm
and -0.57 V, respectively. This is attributed to the refinement of grain size and eutectic silicon size, as well as the appropriate Si volume fraction. Therefore, optimizing the sintering temperature can effectively improve the performance of AlSi10Mg alloy. |
doi_str_mv | 10.3390/ma16237394 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902951287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775890633</galeid><sourcerecordid>A775890633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-524b6d24cea419b1233c8211db5f2257222aa934b42e4485941da601fd6d1983</originalsourceid><addsrcrecordid>eNpdkV1rFTEQhhdRbKm98QdIwBuRnjafu8nloZxWoaXFU_FyySazx9TsZk2yYK_942Y5tRVnLmYYnvlg3qp6S_ApYwqfDZrUlDVM8RfVIVGqXhHF-ct_8oPqOKV7XIwxIql6XR0wiWtJmDysfm9-TT5EN-7QtTMxpBxnk-cIJ-gb6Ii-QHIp69GUgh4t2ngwOQbzHQZntEe3MUwQs4OEQo_WfusIvt6VxIcHdKG7WKgMFn1Ny4rtpOMPdOt1GjTaujHDsvlN9arXPsHxYzyq7i42d-efVlc3l5_P11crw7jKK0F5V1vKDWhOVEcoY0ZSQmwnekpFQynVWjHecQqcS6E4sbrGpLe1JUqyo-rDfuwUw88ZUm4Hlwx4r0cIc2qpwlQJQmVT0Pf_ofdhjmM5rqVSKU6FIKJQp3tqpz20buxDjtoUt8tzwgi9K_V10wipcM1Yafi4b1genSL07RTdoONDS3C7qNk-q1ngd483zN0A9gn9qx37A84cmK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899425515</pqid></control><display><type>article</type><title>Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rong, Guangfei ; Xin, Wenjie ; Zhou, Minxu ; Ma, Tengfei ; Wang, Xiaohong ; Jiang, Xiaoying</creator><creatorcontrib>Rong, Guangfei ; Xin, Wenjie ; Zhou, Minxu ; Ma, Tengfei ; Wang, Xiaohong ; Jiang, Xiaoying</creatorcontrib><description>Al-Si-Mg alloy has excellent casting performance due to its high silicon content, but the coarse eutectic silicon phase can lead to a decrease in its mechanical properties. Samples of AlSi10Mg alloy were prepared by using a spark plasma sintering method, and it was found that sintering temperature has a significant impact on the grain size, eutectic silicon size and wear and corrosion properties after heat treatment. At a sintering temperature of 525 °C, the alloy exhibits the best wear performance with an average friction coefficient of 0.29. This is attributed to the uniform precipitation of fine eutectic silicon phases, significantly improving wear resistance and establishing adhesive wear as the wear mechanism of AlSi10Mg alloy at room temperature. The electrochemical performance of AlSi10Mg sintered at 500 °C is the best, with I
and E
being 1.33 × 10
A·cm
and -0.57 V, respectively. This is attributed to the refinement of grain size and eutectic silicon size, as well as the appropriate Si volume fraction. Therefore, optimizing the sintering temperature can effectively improve the performance of AlSi10Mg alloy.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16237394</identifier><identifier>PMID: 38068138</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum ; Aluminum alloys ; Aluminum base alloys ; Chemical industry ; Chemical properties ; Coefficient of friction ; Composite materials ; Corrosion and anti-corrosives ; Corrosion resistance ; Corrosive wear ; Electrochemical analysis ; Electrodes ; Electrolytes ; Eutectics ; Friction ; Grain size ; Heat treatment ; Herbicides ; Magnesium ; Mechanical properties ; Microstructure ; Morphology ; Performance enhancement ; Pesticides industry ; Plasma sintering ; Room temperature ; Silicon ; Sintering ; Spark plasma sintering ; Specialty metals industry ; Temperature ; Wear mechanisms ; Wear resistance</subject><ispartof>Materials, 2023-11, Vol.16 (23), p.7394</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-524b6d24cea419b1233c8211db5f2257222aa934b42e4485941da601fd6d1983</cites><orcidid>0000-0002-1026-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38068138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rong, Guangfei</creatorcontrib><creatorcontrib>Xin, Wenjie</creatorcontrib><creatorcontrib>Zhou, Minxu</creatorcontrib><creatorcontrib>Ma, Tengfei</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Jiang, Xiaoying</creatorcontrib><title>Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Al-Si-Mg alloy has excellent casting performance due to its high silicon content, but the coarse eutectic silicon phase can lead to a decrease in its mechanical properties. Samples of AlSi10Mg alloy were prepared by using a spark plasma sintering method, and it was found that sintering temperature has a significant impact on the grain size, eutectic silicon size and wear and corrosion properties after heat treatment. At a sintering temperature of 525 °C, the alloy exhibits the best wear performance with an average friction coefficient of 0.29. This is attributed to the uniform precipitation of fine eutectic silicon phases, significantly improving wear resistance and establishing adhesive wear as the wear mechanism of AlSi10Mg alloy at room temperature. The electrochemical performance of AlSi10Mg sintered at 500 °C is the best, with I
and E
being 1.33 × 10
A·cm
and -0.57 V, respectively. This is attributed to the refinement of grain size and eutectic silicon size, as well as the appropriate Si volume fraction. Therefore, optimizing the sintering temperature can effectively improve the performance of AlSi10Mg alloy.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Chemical industry</subject><subject>Chemical properties</subject><subject>Coefficient of friction</subject><subject>Composite materials</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Corrosive wear</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Eutectics</subject><subject>Friction</subject><subject>Grain size</subject><subject>Heat treatment</subject><subject>Herbicides</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Performance enhancement</subject><subject>Pesticides industry</subject><subject>Plasma sintering</subject><subject>Room temperature</subject><subject>Silicon</subject><subject>Sintering</subject><subject>Spark plasma sintering</subject><subject>Specialty metals industry</subject><subject>Temperature</subject><subject>Wear mechanisms</subject><subject>Wear resistance</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1rFTEQhhdRbKm98QdIwBuRnjafu8nloZxWoaXFU_FyySazx9TsZk2yYK_942Y5tRVnLmYYnvlg3qp6S_ApYwqfDZrUlDVM8RfVIVGqXhHF-ct_8oPqOKV7XIwxIql6XR0wiWtJmDysfm9-TT5EN-7QtTMxpBxnk-cIJ-gb6Ii-QHIp69GUgh4t2ngwOQbzHQZntEe3MUwQs4OEQo_WfusIvt6VxIcHdKG7WKgMFn1Ny4rtpOMPdOt1GjTaujHDsvlN9arXPsHxYzyq7i42d-efVlc3l5_P11crw7jKK0F5V1vKDWhOVEcoY0ZSQmwnekpFQynVWjHecQqcS6E4sbrGpLe1JUqyo-rDfuwUw88ZUm4Hlwx4r0cIc2qpwlQJQmVT0Pf_ofdhjmM5rqVSKU6FIKJQp3tqpz20buxDjtoUt8tzwgi9K_V10wipcM1Yafi4b1genSL07RTdoONDS3C7qNk-q1ngd483zN0A9gn9qx37A84cmK8</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Rong, Guangfei</creator><creator>Xin, Wenjie</creator><creator>Zhou, Minxu</creator><creator>Ma, Tengfei</creator><creator>Wang, Xiaohong</creator><creator>Jiang, Xiaoying</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1026-4574</orcidid></search><sort><creationdate>20231128</creationdate><title>Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering</title><author>Rong, Guangfei ; Xin, Wenjie ; Zhou, Minxu ; Ma, Tengfei ; Wang, Xiaohong ; Jiang, Xiaoying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-524b6d24cea419b1233c8211db5f2257222aa934b42e4485941da601fd6d1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Chemical industry</topic><topic>Chemical properties</topic><topic>Coefficient of friction</topic><topic>Composite materials</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Corrosive wear</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Eutectics</topic><topic>Friction</topic><topic>Grain size</topic><topic>Heat treatment</topic><topic>Herbicides</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Performance enhancement</topic><topic>Pesticides industry</topic><topic>Plasma sintering</topic><topic>Room temperature</topic><topic>Silicon</topic><topic>Sintering</topic><topic>Spark plasma sintering</topic><topic>Specialty metals industry</topic><topic>Temperature</topic><topic>Wear mechanisms</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong, Guangfei</creatorcontrib><creatorcontrib>Xin, Wenjie</creatorcontrib><creatorcontrib>Zhou, Minxu</creatorcontrib><creatorcontrib>Ma, Tengfei</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Jiang, Xiaoying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rong, Guangfei</au><au>Xin, Wenjie</au><au>Zhou, Minxu</au><au>Ma, Tengfei</au><au>Wang, Xiaohong</au><au>Jiang, Xiaoying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-11-28</date><risdate>2023</risdate><volume>16</volume><issue>23</issue><spage>7394</spage><pages>7394-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Al-Si-Mg alloy has excellent casting performance due to its high silicon content, but the coarse eutectic silicon phase can lead to a decrease in its mechanical properties. Samples of AlSi10Mg alloy were prepared by using a spark plasma sintering method, and it was found that sintering temperature has a significant impact on the grain size, eutectic silicon size and wear and corrosion properties after heat treatment. At a sintering temperature of 525 °C, the alloy exhibits the best wear performance with an average friction coefficient of 0.29. This is attributed to the uniform precipitation of fine eutectic silicon phases, significantly improving wear resistance and establishing adhesive wear as the wear mechanism of AlSi10Mg alloy at room temperature. The electrochemical performance of AlSi10Mg sintered at 500 °C is the best, with I
and E
being 1.33 × 10
A·cm
and -0.57 V, respectively. This is attributed to the refinement of grain size and eutectic silicon size, as well as the appropriate Si volume fraction. Therefore, optimizing the sintering temperature can effectively improve the performance of AlSi10Mg alloy.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38068138</pmid><doi>10.3390/ma16237394</doi><orcidid>https://orcid.org/0000-0002-1026-4574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-11, Vol.16 (23), p.7394 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902951287 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alloys Aluminum Aluminum alloys Aluminum base alloys Chemical industry Chemical properties Coefficient of friction Composite materials Corrosion and anti-corrosives Corrosion resistance Corrosive wear Electrochemical analysis Electrodes Electrolytes Eutectics Friction Grain size Heat treatment Herbicides Magnesium Mechanical properties Microstructure Morphology Performance enhancement Pesticides industry Plasma sintering Room temperature Silicon Sintering Spark plasma sintering Specialty metals industry Temperature Wear mechanisms Wear resistance |
title | Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Microstructure,%20Wear%20Resistance,%20and%20Electrochemical%20Properties%20of%20AlSi10Mg%20Alloy%20Fabricated%20Using%20Spark%20Plasma%20Sintering&rft.jtitle=Materials&rft.au=Rong,%20Guangfei&rft.date=2023-11-28&rft.volume=16&rft.issue=23&rft.spage=7394&rft.pages=7394-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16237394&rft_dat=%3Cgale_proqu%3EA775890633%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899425515&rft_id=info:pmid/38068138&rft_galeid=A775890633&rfr_iscdi=true |