Genetic engineering low-arsenic and low-cadmium rice grain

Rice is prone to take up the toxic elements arsenic (As) and cadmium (Cd) from paddy soil through the transporters for other essential elements. Disruption of these essential transporters usually adversely affects the normal growth of rice and the homeostasis of essential elements. Here we report on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2024-03, Vol.75 (7), p.2143-2155
Hauptverfasser: Gui, Yuejing, Teo, Joanne, Tian, Dongsheng, Yin, Zhongchao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rice is prone to take up the toxic elements arsenic (As) and cadmium (Cd) from paddy soil through the transporters for other essential elements. Disruption of these essential transporters usually adversely affects the normal growth of rice and the homeostasis of essential elements. Here we report on developing low-As and low-Cd rice grain through the co-overexpression of OsPCS1, OsABCC1, and OsHMA3 genes under the control of the rice OsActin1 promoter. Co-overexpression of OsPCS1 and OsABCC1 synergistically decreased As concentration in the grain. Overexpression of OsPCS1 also decreased Cd concentration in the grain by restricting the xylem-to-phloem Cd transport in node I, but paradoxically caused Cd hypersensitivity as the overproduced phytochelatins in OsPCS1-overexpressing plants suppressed OsHMA3-dependent Cd sequestration in vacuoles and promoted Cd transport from root to shoot. Co-overexpression of OsHAM3 and OsPCS1 overcame this suppression and complemented the Cd hypersensitivity. Compared with non-transgenic rice control, co-overexpression of OsABCC1, OsPCS1, and OsHMA3 in rice decreased As and Cd concentrations in grain by 92.1% and 98%, respectively, without causing any defect in plant growth and reproduction or of mineral nutrients in grain. Our research provides an effective approach and useful genetic materials for developing low-As and low-Cd rice grain.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erad495