Using visual scores for genomic prediction of complex traits in breeding programs
Key message An approach for handling visual scores with potential errors and subjectivity in scores was evaluated in simulated and blueberry recurrent selection breeding schemes to assist breeders in their decision-making. Most genomic prediction methods are based on assumptions of normality due to...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2024-01, Vol.137 (1), p.9-9, Article 9 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | Theoretical and applied genetics |
container_volume | 137 |
creator | Azevedo, Camila Ferreira Ferrão, Luis Felipe Ventorim Benevenuto, Juliana de Resende, Marcos Deon Vilela Nascimento, Moyses Nascimento, Ana Carolina Campana Munoz, Patricio R. |
description | Key message
An approach for handling visual scores with potential errors and subjectivity in scores was evaluated in simulated and blueberry recurrent selection breeding schemes to assist breeders in their decision-making.
Most genomic prediction methods are based on assumptions of normality due to their simplicity and ease of implementation. However, in plant and animal breeding, continuous traits are often visually scored as categorical traits and analyzed as a Gaussian variable, thus violating the normality assumption, which could affect the prediction of breeding values and the estimation of genetic parameters. In this study, we examined the main challenges of visual scores for genomic prediction and genetic parameter estimation using mixed models, Bayesian, and machine learning methods. We evaluated these approaches using simulated and real breeding data sets. Our contribution in this study is a five-fold demonstration: (i) collecting data using an intermediate number of categories (1–3 and 1–5) is the best strategy, even considering errors associated with visual scores; (ii) Linear Mixed Models and Bayesian Linear Regression are robust to the normality violation, but marginal gains can be achieved when using Bayesian Ordinal Regression Models (BORM) and Random Forest Classification; (iii) genetic parameters are better estimated using BORM; (iv) our conclusions using simulated data are also applicable to real data in autotetraploid blueberry; and (v) a comparison of continuous and categorical phenotypes found that investing in the evaluation of 600–1000 categorical data points with low error, when it is not feasible to collect continuous phenotypes, is a strategy for improving predictive abilities. Our findings suggest the best approaches for effectively using visual scores traits to explore genetic information in breeding programs and highlight the importance of investing in the training of evaluator teams and in high-quality phenotyping. |
doi_str_mv | 10.1007/s00122-023-04512-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902940075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776468942</galeid><sourcerecordid>A776468942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-dc8d2e61e9490526bd62ed9a14ff76f46df594a23efb056d2627b1cea8843fbc3</originalsourceid><addsrcrecordid>eNqFks1rFTEUxYMo9rX6D7iQgBtdTE1uPmZmWYraQkH86DpkMjdDyszkmczY-t-b9lXLE1GyCCS_cy7ncgh5wdkxZ6x-mxnjABUDUTGpOFTXj8iGSwEVgITHZMOYZJWqFRyQw5yvGGOgmHhKDkTDGchWbcinyxzmgX4PebUjzS4mzNTHRAec4xQc3Sbsg1tCnGn01MVpO-INXZINS6Zhpl3CAhSLbYpDslN-Rp54O2Z8fn8fkcv3776enlUXHz-cn55cVE6xdql61_SAmmMrW6ZAd70G7FvLpfe19lL3XrXSgkDfMaV70FB33KFtGil858QReb3zLYO_rZgXM4XscBztjHHNRnAllKwB-H9RaBm0sqxUFfTVH-hVXNNcgtxRXCslmwdqsCOaMPtYFuJuTc1JXWupm1ZCoY7_QpXTY9lsnNGH8r4neLMnKMyCN8tg15zN-ZfP-yzsWJdizgm92aYw2fTDcGZu62F29TClHuauHua6iF7ep1u7Cfvfkl99KIDYAbl8zQOmh_j_sP0Jz2HC1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902165548</pqid></control><display><type>article</type><title>Using visual scores for genomic prediction of complex traits in breeding programs</title><source>MEDLINE</source><source>Springer Online Journals</source><creator>Azevedo, Camila Ferreira ; Ferrão, Luis Felipe Ventorim ; Benevenuto, Juliana ; de Resende, Marcos Deon Vilela ; Nascimento, Moyses ; Nascimento, Ana Carolina Campana ; Munoz, Patricio R.</creator><creatorcontrib>Azevedo, Camila Ferreira ; Ferrão, Luis Felipe Ventorim ; Benevenuto, Juliana ; de Resende, Marcos Deon Vilela ; Nascimento, Moyses ; Nascimento, Ana Carolina Campana ; Munoz, Patricio R.</creatorcontrib><description>Key message
An approach for handling visual scores with potential errors and subjectivity in scores was evaluated in simulated and blueberry recurrent selection breeding schemes to assist breeders in their decision-making.
Most genomic prediction methods are based on assumptions of normality due to their simplicity and ease of implementation. However, in plant and animal breeding, continuous traits are often visually scored as categorical traits and analyzed as a Gaussian variable, thus violating the normality assumption, which could affect the prediction of breeding values and the estimation of genetic parameters. In this study, we examined the main challenges of visual scores for genomic prediction and genetic parameter estimation using mixed models, Bayesian, and machine learning methods. We evaluated these approaches using simulated and real breeding data sets. Our contribution in this study is a five-fold demonstration: (i) collecting data using an intermediate number of categories (1–3 and 1–5) is the best strategy, even considering errors associated with visual scores; (ii) Linear Mixed Models and Bayesian Linear Regression are robust to the normality violation, but marginal gains can be achieved when using Bayesian Ordinal Regression Models (BORM) and Random Forest Classification; (iii) genetic parameters are better estimated using BORM; (iv) our conclusions using simulated data are also applicable to real data in autotetraploid blueberry; and (v) a comparison of continuous and categorical phenotypes found that investing in the evaluation of 600–1000 categorical data points with low error, when it is not feasible to collect continuous phenotypes, is a strategy for improving predictive abilities. Our findings suggest the best approaches for effectively using visual scores traits to explore genetic information in breeding programs and highlight the importance of investing in the training of evaluator teams and in high-quality phenotyping.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-023-04512-w</identifier><identifier>PMID: 38102495</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Animals ; Autotetraploid ; autotetraploidy ; Bayes Theorem ; Bayesian analysis ; Bayesian theory ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; blueberries ; Decision making ; Genome ; Genomics ; Genomics - methods ; Life Sciences ; Machine learning ; Mathematical models ; Methods ; Models, Genetic ; Multifactorial Inheritance ; Original Article ; Parameter estimation ; Phenotype ; Phenotypes ; Phenotyping ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; prediction ; Predictions ; recurrent selection ; Regression analysis ; Statistical models</subject><ispartof>Theoretical and applied genetics, 2024-01, Vol.137 (1), p.9-9, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-dc8d2e61e9490526bd62ed9a14ff76f46df594a23efb056d2627b1cea8843fbc3</citedby><cites>FETCH-LOGICAL-c509t-dc8d2e61e9490526bd62ed9a14ff76f46df594a23efb056d2627b1cea8843fbc3</cites><orcidid>0000-0002-9655-4838 ; 0000-0002-4698-2738 ; 0000-0001-5886-9540 ; 0000-0001-8973-9351 ; 0000-0003-0438-5123 ; 0000-0002-3087-3588 ; 0000-0002-6985-1490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-023-04512-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-023-04512-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38102495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Ferrão, Luis Felipe Ventorim</creatorcontrib><creatorcontrib>Benevenuto, Juliana</creatorcontrib><creatorcontrib>de Resende, Marcos Deon Vilela</creatorcontrib><creatorcontrib>Nascimento, Moyses</creatorcontrib><creatorcontrib>Nascimento, Ana Carolina Campana</creatorcontrib><creatorcontrib>Munoz, Patricio R.</creatorcontrib><title>Using visual scores for genomic prediction of complex traits in breeding programs</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
An approach for handling visual scores with potential errors and subjectivity in scores was evaluated in simulated and blueberry recurrent selection breeding schemes to assist breeders in their decision-making.
Most genomic prediction methods are based on assumptions of normality due to their simplicity and ease of implementation. However, in plant and animal breeding, continuous traits are often visually scored as categorical traits and analyzed as a Gaussian variable, thus violating the normality assumption, which could affect the prediction of breeding values and the estimation of genetic parameters. In this study, we examined the main challenges of visual scores for genomic prediction and genetic parameter estimation using mixed models, Bayesian, and machine learning methods. We evaluated these approaches using simulated and real breeding data sets. Our contribution in this study is a five-fold demonstration: (i) collecting data using an intermediate number of categories (1–3 and 1–5) is the best strategy, even considering errors associated with visual scores; (ii) Linear Mixed Models and Bayesian Linear Regression are robust to the normality violation, but marginal gains can be achieved when using Bayesian Ordinal Regression Models (BORM) and Random Forest Classification; (iii) genetic parameters are better estimated using BORM; (iv) our conclusions using simulated data are also applicable to real data in autotetraploid blueberry; and (v) a comparison of continuous and categorical phenotypes found that investing in the evaluation of 600–1000 categorical data points with low error, when it is not feasible to collect continuous phenotypes, is a strategy for improving predictive abilities. Our findings suggest the best approaches for effectively using visual scores traits to explore genetic information in breeding programs and highlight the importance of investing in the training of evaluator teams and in high-quality phenotyping.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Autotetraploid</subject><subject>autotetraploidy</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>blueberries</subject><subject>Decision making</subject><subject>Genome</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Multifactorial Inheritance</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>prediction</subject><subject>Predictions</subject><subject>recurrent selection</subject><subject>Regression analysis</subject><subject>Statistical models</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks1rFTEUxYMo9rX6D7iQgBtdTE1uPmZmWYraQkH86DpkMjdDyszkmczY-t-b9lXLE1GyCCS_cy7ncgh5wdkxZ6x-mxnjABUDUTGpOFTXj8iGSwEVgITHZMOYZJWqFRyQw5yvGGOgmHhKDkTDGchWbcinyxzmgX4PebUjzS4mzNTHRAec4xQc3Sbsg1tCnGn01MVpO-INXZINS6Zhpl3CAhSLbYpDslN-Rp54O2Z8fn8fkcv3776enlUXHz-cn55cVE6xdql61_SAmmMrW6ZAd70G7FvLpfe19lL3XrXSgkDfMaV70FB33KFtGil858QReb3zLYO_rZgXM4XscBztjHHNRnAllKwB-H9RaBm0sqxUFfTVH-hVXNNcgtxRXCslmwdqsCOaMPtYFuJuTc1JXWupm1ZCoY7_QpXTY9lsnNGH8r4neLMnKMyCN8tg15zN-ZfP-yzsWJdizgm92aYw2fTDcGZu62F29TClHuauHua6iF7ep1u7Cfvfkl99KIDYAbl8zQOmh_j_sP0Jz2HC1g</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Azevedo, Camila Ferreira</creator><creator>Ferrão, Luis Felipe Ventorim</creator><creator>Benevenuto, Juliana</creator><creator>de Resende, Marcos Deon Vilela</creator><creator>Nascimento, Moyses</creator><creator>Nascimento, Ana Carolina Campana</creator><creator>Munoz, Patricio R.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9655-4838</orcidid><orcidid>https://orcid.org/0000-0002-4698-2738</orcidid><orcidid>https://orcid.org/0000-0001-5886-9540</orcidid><orcidid>https://orcid.org/0000-0001-8973-9351</orcidid><orcidid>https://orcid.org/0000-0003-0438-5123</orcidid><orcidid>https://orcid.org/0000-0002-3087-3588</orcidid><orcidid>https://orcid.org/0000-0002-6985-1490</orcidid></search><sort><creationdate>20240101</creationdate><title>Using visual scores for genomic prediction of complex traits in breeding programs</title><author>Azevedo, Camila Ferreira ; Ferrão, Luis Felipe Ventorim ; Benevenuto, Juliana ; de Resende, Marcos Deon Vilela ; Nascimento, Moyses ; Nascimento, Ana Carolina Campana ; Munoz, Patricio R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-dc8d2e61e9490526bd62ed9a14ff76f46df594a23efb056d2627b1cea8843fbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Autotetraploid</topic><topic>autotetraploidy</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>blueberries</topic><topic>Decision making</topic><topic>Genome</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Multifactorial Inheritance</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>prediction</topic><topic>Predictions</topic><topic>recurrent selection</topic><topic>Regression analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Ferrão, Luis Felipe Ventorim</creatorcontrib><creatorcontrib>Benevenuto, Juliana</creatorcontrib><creatorcontrib>de Resende, Marcos Deon Vilela</creatorcontrib><creatorcontrib>Nascimento, Moyses</creatorcontrib><creatorcontrib>Nascimento, Ana Carolina Campana</creatorcontrib><creatorcontrib>Munoz, Patricio R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azevedo, Camila Ferreira</au><au>Ferrão, Luis Felipe Ventorim</au><au>Benevenuto, Juliana</au><au>de Resende, Marcos Deon Vilela</au><au>Nascimento, Moyses</au><au>Nascimento, Ana Carolina Campana</au><au>Munoz, Patricio R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using visual scores for genomic prediction of complex traits in breeding programs</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>137</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
An approach for handling visual scores with potential errors and subjectivity in scores was evaluated in simulated and blueberry recurrent selection breeding schemes to assist breeders in their decision-making.
Most genomic prediction methods are based on assumptions of normality due to their simplicity and ease of implementation. However, in plant and animal breeding, continuous traits are often visually scored as categorical traits and analyzed as a Gaussian variable, thus violating the normality assumption, which could affect the prediction of breeding values and the estimation of genetic parameters. In this study, we examined the main challenges of visual scores for genomic prediction and genetic parameter estimation using mixed models, Bayesian, and machine learning methods. We evaluated these approaches using simulated and real breeding data sets. Our contribution in this study is a five-fold demonstration: (i) collecting data using an intermediate number of categories (1–3 and 1–5) is the best strategy, even considering errors associated with visual scores; (ii) Linear Mixed Models and Bayesian Linear Regression are robust to the normality violation, but marginal gains can be achieved when using Bayesian Ordinal Regression Models (BORM) and Random Forest Classification; (iii) genetic parameters are better estimated using BORM; (iv) our conclusions using simulated data are also applicable to real data in autotetraploid blueberry; and (v) a comparison of continuous and categorical phenotypes found that investing in the evaluation of 600–1000 categorical data points with low error, when it is not feasible to collect continuous phenotypes, is a strategy for improving predictive abilities. Our findings suggest the best approaches for effectively using visual scores traits to explore genetic information in breeding programs and highlight the importance of investing in the training of evaluator teams and in high-quality phenotyping.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38102495</pmid><doi>10.1007/s00122-023-04512-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9655-4838</orcidid><orcidid>https://orcid.org/0000-0002-4698-2738</orcidid><orcidid>https://orcid.org/0000-0001-5886-9540</orcidid><orcidid>https://orcid.org/0000-0001-8973-9351</orcidid><orcidid>https://orcid.org/0000-0003-0438-5123</orcidid><orcidid>https://orcid.org/0000-0002-3087-3588</orcidid><orcidid>https://orcid.org/0000-0002-6985-1490</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2024-01, Vol.137 (1), p.9-9, Article 9 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902940075 |
source | MEDLINE; Springer Online Journals |
subjects | Agricultural research Agriculture Animals Autotetraploid autotetraploidy Bayes Theorem Bayesian analysis Bayesian theory Biochemistry Biomedical and Life Sciences Biotechnology blueberries Decision making Genome Genomics Genomics - methods Life Sciences Machine learning Mathematical models Methods Models, Genetic Multifactorial Inheritance Original Article Parameter estimation Phenotype Phenotypes Phenotyping Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Genetics and Genomics prediction Predictions recurrent selection Regression analysis Statistical models |
title | Using visual scores for genomic prediction of complex traits in breeding programs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20visual%20scores%20for%20genomic%20prediction%20of%20complex%20traits%20in%20breeding%20programs&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Azevedo,%20Camila%20Ferreira&rft.date=2024-01-01&rft.volume=137&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-023-04512-w&rft_dat=%3Cgale_proqu%3EA776468942%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902165548&rft_id=info:pmid/38102495&rft_galeid=A776468942&rfr_iscdi=true |