Triboelectrification and Unique Frictional Characteristics of Germanium-Based Nanofilms

In this study, germanium arsenide (GeAs) is investigated as a promising nanomaterial for application in triboelectric nanogenerators and green energy harvesting. The mechanical and electrical properties of mechanically exfoliated GeAs on silica substrates are evaluated through friction force microsc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (19), p.e2309862-e2309862
Hauptverfasser: Xu, Chaochen, Egberts, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2309862
container_issue 19
container_start_page e2309862
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Xu, Chaochen
Egberts, Philip
description In this study, germanium arsenide (GeAs) is investigated as a promising nanomaterial for application in triboelectric nanogenerators and green energy harvesting. The mechanical and electrical properties of mechanically exfoliated GeAs on silica substrates are evaluated through friction force microscopy and Kelvin probe force microscopy, respectively. First, it is observed that the surface potential/work function of GeAs varied with thickness. Second, thickness-dependent friction on GeAs films is found. However, the variation of friction with GeAs thickness followed an inverse trend typically observed for most other 2D material systems: larger friction is measured on thicker GeAs films. The higher friction is attributed to the higher surface potential of thicker GeAs, resulting from the accumulation of electrons on the GeAs surface that also resulted in higher adhesion between GeAs surface and the tip. Finally, history-dependent friction is observed and resulted from a continual increase in the friction force as the surface is scanned and originated from the triboelectrification of the surface. The dynamic triboelectrification behavior of thick GeAs during the scanning process is further verified and visualized by a serial experiment, where the GeAs is tribo-electrified through scanning and gradually de-electrified/discharged upon ceasing the scan.
doi_str_mv 10.1002/smll.202309862
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902933274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902933274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-d5b54eef772934fd51a0d3956958a13e29e732d07edf1caef490793453004e373</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqWwMqJILCwpZ18SxyNUtCBVsLRijFznLFzlo9jJwL8nVUsHpjudnnt19zB2y2HKAcRjqKtqKkAgqDwTZ2zMM45xlgt1fuo5jNhVCFsA5CKRl2yEOchc5jhmnyvvNi1VZDrvrDO6c20T6aaM1o377imae2f2M11Fsy_ttenIu9A5E6LWRgvytW5cX8fPOlAZveumta6qwzW7sLoKdHOsE7aev6xmr_HyY_E2e1rGBnnexWW6SRMiK6VQmNgy5RpKVGmm0lxzJKFIoihBUmm50WQTBXIgUwRICCVO2MMhd-fb4dzQFbULhqpKN9T2oRAKhmQUMhnQ-3_otu398FgoEFKRKiUBB2p6oIxvQ_Bki513tfY_BYdir7zYKy9OyoeFu2Nsv6mpPOF_jvEXw8h8Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052599703</pqid></control><display><type>article</type><title>Triboelectrification and Unique Frictional Characteristics of Germanium-Based Nanofilms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Chaochen ; Egberts, Philip</creator><creatorcontrib>Xu, Chaochen ; Egberts, Philip</creatorcontrib><description>In this study, germanium arsenide (GeAs) is investigated as a promising nanomaterial for application in triboelectric nanogenerators and green energy harvesting. The mechanical and electrical properties of mechanically exfoliated GeAs on silica substrates are evaluated through friction force microscopy and Kelvin probe force microscopy, respectively. First, it is observed that the surface potential/work function of GeAs varied with thickness. Second, thickness-dependent friction on GeAs films is found. However, the variation of friction with GeAs thickness followed an inverse trend typically observed for most other 2D material systems: larger friction is measured on thicker GeAs films. The higher friction is attributed to the higher surface potential of thicker GeAs, resulting from the accumulation of electrons on the GeAs surface that also resulted in higher adhesion between GeAs surface and the tip. Finally, history-dependent friction is observed and resulted from a continual increase in the friction force as the surface is scanned and originated from the triboelectrification of the surface. The dynamic triboelectrification behavior of thick GeAs during the scanning process is further verified and visualized by a serial experiment, where the GeAs is tribo-electrified through scanning and gradually de-electrified/discharged upon ceasing the scan.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202309862</identifier><identifier>PMID: 38078783</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Arsenides ; Clean energy ; Electrical properties ; Energy harvesting ; Friction ; Germanium ; Microscopy ; Nanogenerators ; Nanomaterials ; Substrates ; Thickness ; Two dimensional materials ; Work functions</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (19), p.e2309862-e2309862</ispartof><rights>2023 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-d5b54eef772934fd51a0d3956958a13e29e732d07edf1caef490793453004e373</cites><orcidid>0000-0001-5167-8557 ; 0000-0002-3353-4493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38078783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Chaochen</creatorcontrib><creatorcontrib>Egberts, Philip</creatorcontrib><title>Triboelectrification and Unique Frictional Characteristics of Germanium-Based Nanofilms</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>In this study, germanium arsenide (GeAs) is investigated as a promising nanomaterial for application in triboelectric nanogenerators and green energy harvesting. The mechanical and electrical properties of mechanically exfoliated GeAs on silica substrates are evaluated through friction force microscopy and Kelvin probe force microscopy, respectively. First, it is observed that the surface potential/work function of GeAs varied with thickness. Second, thickness-dependent friction on GeAs films is found. However, the variation of friction with GeAs thickness followed an inverse trend typically observed for most other 2D material systems: larger friction is measured on thicker GeAs films. The higher friction is attributed to the higher surface potential of thicker GeAs, resulting from the accumulation of electrons on the GeAs surface that also resulted in higher adhesion between GeAs surface and the tip. Finally, history-dependent friction is observed and resulted from a continual increase in the friction force as the surface is scanned and originated from the triboelectrification of the surface. The dynamic triboelectrification behavior of thick GeAs during the scanning process is further verified and visualized by a serial experiment, where the GeAs is tribo-electrified through scanning and gradually de-electrified/discharged upon ceasing the scan.</description><subject>Arsenides</subject><subject>Clean energy</subject><subject>Electrical properties</subject><subject>Energy harvesting</subject><subject>Friction</subject><subject>Germanium</subject><subject>Microscopy</subject><subject>Nanogenerators</subject><subject>Nanomaterials</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Two dimensional materials</subject><subject>Work functions</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EoqWwMqJILCwpZ18SxyNUtCBVsLRijFznLFzlo9jJwL8nVUsHpjudnnt19zB2y2HKAcRjqKtqKkAgqDwTZ2zMM45xlgt1fuo5jNhVCFsA5CKRl2yEOchc5jhmnyvvNi1VZDrvrDO6c20T6aaM1o377imae2f2M11Fsy_ttenIu9A5E6LWRgvytW5cX8fPOlAZveumta6qwzW7sLoKdHOsE7aev6xmr_HyY_E2e1rGBnnexWW6SRMiK6VQmNgy5RpKVGmm0lxzJKFIoihBUmm50WQTBXIgUwRICCVO2MMhd-fb4dzQFbULhqpKN9T2oRAKhmQUMhnQ-3_otu398FgoEFKRKiUBB2p6oIxvQ_Bki513tfY_BYdir7zYKy9OyoeFu2Nsv6mpPOF_jvEXw8h8Xw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Xu, Chaochen</creator><creator>Egberts, Philip</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5167-8557</orcidid><orcidid>https://orcid.org/0000-0002-3353-4493</orcidid></search><sort><creationdate>20240501</creationdate><title>Triboelectrification and Unique Frictional Characteristics of Germanium-Based Nanofilms</title><author>Xu, Chaochen ; Egberts, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-d5b54eef772934fd51a0d3956958a13e29e732d07edf1caef490793453004e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arsenides</topic><topic>Clean energy</topic><topic>Electrical properties</topic><topic>Energy harvesting</topic><topic>Friction</topic><topic>Germanium</topic><topic>Microscopy</topic><topic>Nanogenerators</topic><topic>Nanomaterials</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Two dimensional materials</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chaochen</creatorcontrib><creatorcontrib>Egberts, Philip</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chaochen</au><au>Egberts, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triboelectrification and Unique Frictional Characteristics of Germanium-Based Nanofilms</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>19</issue><spage>e2309862</spage><epage>e2309862</epage><pages>e2309862-e2309862</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>In this study, germanium arsenide (GeAs) is investigated as a promising nanomaterial for application in triboelectric nanogenerators and green energy harvesting. The mechanical and electrical properties of mechanically exfoliated GeAs on silica substrates are evaluated through friction force microscopy and Kelvin probe force microscopy, respectively. First, it is observed that the surface potential/work function of GeAs varied with thickness. Second, thickness-dependent friction on GeAs films is found. However, the variation of friction with GeAs thickness followed an inverse trend typically observed for most other 2D material systems: larger friction is measured on thicker GeAs films. The higher friction is attributed to the higher surface potential of thicker GeAs, resulting from the accumulation of electrons on the GeAs surface that also resulted in higher adhesion between GeAs surface and the tip. Finally, history-dependent friction is observed and resulted from a continual increase in the friction force as the surface is scanned and originated from the triboelectrification of the surface. The dynamic triboelectrification behavior of thick GeAs during the scanning process is further verified and visualized by a serial experiment, where the GeAs is tribo-electrified through scanning and gradually de-electrified/discharged upon ceasing the scan.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38078783</pmid><doi>10.1002/smll.202309862</doi><orcidid>https://orcid.org/0000-0001-5167-8557</orcidid><orcidid>https://orcid.org/0000-0002-3353-4493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (19), p.e2309862-e2309862
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2902933274
source Wiley Online Library Journals Frontfile Complete
subjects Arsenides
Clean energy
Electrical properties
Energy harvesting
Friction
Germanium
Microscopy
Nanogenerators
Nanomaterials
Substrates
Thickness
Two dimensional materials
Work functions
title Triboelectrification and Unique Frictional Characteristics of Germanium-Based Nanofilms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triboelectrification%20and%20Unique%20Frictional%20Characteristics%20of%20Germanium-Based%20Nanofilms&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Xu,%20Chaochen&rft.date=2024-05-01&rft.volume=20&rft.issue=19&rft.spage=e2309862&rft.epage=e2309862&rft.pages=e2309862-e2309862&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202309862&rft_dat=%3Cproquest_cross%3E2902933274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052599703&rft_id=info:pmid/38078783&rfr_iscdi=true