Application of a stress sharing model to simulation of particle/fluid parallel flow

A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2006-02, Vol.181 (3-4), p.169-184
Hauptverfasser: VELLANKI, N. S, PEDDIESON, J, MUNUKUTLA, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184
container_issue 3-4
container_start_page 169
container_title Acta mechanica
container_volume 181
creator VELLANKI, N. S
PEDDIESON, J
MUNUKUTLA, S
description A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase leads the particle phase in an average sense for horizontal flows, the transition from upward average relative velocity to downward average relative velocity occurs at neutral buoyancy in vertical flows with no particle/wall interactions, the average relative velocity is downward for upward flows of negatively buoyant suspensions, and that wall boundary layers are produced by particle/wall interactions. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00707-005-0294-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29026896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29026896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-c4946c125cac68dfc6ce55712024b8798c671e7f00c634a746b5bb891fc85a23</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsfwNsi6G3tJNlNNsdS_AcFD_YesmmiKdnNmuwifntTWhS8zPDg994MD6FrDPcYgC9SHsBLgLoEIqqSnqAZZliUTFB-imYAgMtacDhHFyntsiK8wjP0thwG77QaXeiLYAtVpDGalIr0oaLr34subI0vxlAk103-lxtUHJ32ZmH95LZ7qbzPoPXh6xKdWeWTuTruOdo8PmxWz-X69elltVyXmlI6lroSFdOY1Fpp1mytZtrUNccESNU2XDSacWy4BdCMVopXrK3bthHY6qZWhM7R3SF2iOFzMmmUnUvaeK96E6YkiQDCGsEyePMP3IUp9vk1SQhl-SDDGcIHSMeQUjRWDtF1Kn5LDHJfsTxULHPFcl-xpNlzewxWSStvo-q1S39GXjfQVIz-APvleyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223612061</pqid></control><display><type>article</type><title>Application of a stress sharing model to simulation of particle/fluid parallel flow</title><source>Springer Nature - Complete Springer Journals</source><creator>VELLANKI, N. S ; PEDDIESON, J ; MUNUKUTLA, S</creator><creatorcontrib>VELLANKI, N. S ; PEDDIESON, J ; MUNUKUTLA, S</creatorcontrib><description>A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase leads the particle phase in an average sense for horizontal flows, the transition from upward average relative velocity to downward average relative velocity occurs at neutral buoyancy in vertical flows with no particle/wall interactions, the average relative velocity is downward for upward flows of negatively buoyant suspensions, and that wall boundary layers are produced by particle/wall interactions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-005-0294-3</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Wien: Springer</publisher><subject>Differential equations ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Physics ; Stream flow ; Stress measurement</subject><ispartof>Acta mechanica, 2006-02, Vol.181 (3-4), p.169-184</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag Wien 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-c4946c125cac68dfc6ce55712024b8798c671e7f00c634a746b5bb891fc85a23</citedby><cites>FETCH-LOGICAL-c333t-c4946c125cac68dfc6ce55712024b8798c671e7f00c634a746b5bb891fc85a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17580846$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VELLANKI, N. S</creatorcontrib><creatorcontrib>PEDDIESON, J</creatorcontrib><creatorcontrib>MUNUKUTLA, S</creatorcontrib><title>Application of a stress sharing model to simulation of particle/fluid parallel flow</title><title>Acta mechanica</title><description>A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase leads the particle phase in an average sense for horizontal flows, the transition from upward average relative velocity to downward average relative velocity occurs at neutral buoyancy in vertical flows with no particle/wall interactions, the average relative velocity is downward for upward flows of negatively buoyant suspensions, and that wall boundary layers are produced by particle/wall interactions. [PUBLICATION ABSTRACT]</description><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Stream flow</subject><subject>Stress measurement</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9LAzEQxYMoWKsfwNsi6G3tJNlNNsdS_AcFD_YesmmiKdnNmuwifntTWhS8zPDg994MD6FrDPcYgC9SHsBLgLoEIqqSnqAZZliUTFB-imYAgMtacDhHFyntsiK8wjP0thwG77QaXeiLYAtVpDGalIr0oaLr34subI0vxlAk103-lxtUHJ32ZmH95LZ7qbzPoPXh6xKdWeWTuTruOdo8PmxWz-X69elltVyXmlI6lroSFdOY1Fpp1mytZtrUNccESNU2XDSacWy4BdCMVopXrK3bthHY6qZWhM7R3SF2iOFzMmmUnUvaeK96E6YkiQDCGsEyePMP3IUp9vk1SQhl-SDDGcIHSMeQUjRWDtF1Kn5LDHJfsTxULHPFcl-xpNlzewxWSStvo-q1S39GXjfQVIz-APvleyQ</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>VELLANKI, N. S</creator><creator>PEDDIESON, J</creator><creator>MUNUKUTLA, S</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20060201</creationdate><title>Application of a stress sharing model to simulation of particle/fluid parallel flow</title><author>VELLANKI, N. S ; PEDDIESON, J ; MUNUKUTLA, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-c4946c125cac68dfc6ce55712024b8798c671e7f00c634a746b5bb891fc85a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Stream flow</topic><topic>Stress measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VELLANKI, N. S</creatorcontrib><creatorcontrib>PEDDIESON, J</creatorcontrib><creatorcontrib>MUNUKUTLA, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VELLANKI, N. S</au><au>PEDDIESON, J</au><au>MUNUKUTLA, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a stress sharing model to simulation of particle/fluid parallel flow</atitle><jtitle>Acta mechanica</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>181</volume><issue>3-4</issue><spage>169</spage><epage>184</epage><pages>169-184</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase leads the particle phase in an average sense for horizontal flows, the transition from upward average relative velocity to downward average relative velocity occurs at neutral buoyancy in vertical flows with no particle/wall interactions, the average relative velocity is downward for upward flows of negatively buoyant suspensions, and that wall boundary layers are produced by particle/wall interactions. [PUBLICATION ABSTRACT]</abstract><cop>Wien</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s00707-005-0294-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2006-02, Vol.181 (3-4), p.169-184
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_29026896
source Springer Nature - Complete Springer Journals
subjects Differential equations
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Multiphase and particle-laden flows
Nonhomogeneous flows
Physics
Stream flow
Stress measurement
title Application of a stress sharing model to simulation of particle/fluid parallel flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20stress%20sharing%20model%20to%20simulation%20of%20particle/fluid%20parallel%20flow&rft.jtitle=Acta%20mechanica&rft.au=VELLANKI,%20N.%20S&rft.date=2006-02-01&rft.volume=181&rft.issue=3-4&rft.spage=169&rft.epage=184&rft.pages=169-184&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-005-0294-3&rft_dat=%3Cproquest_cross%3E29026896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223612061&rft_id=info:pmid/&rfr_iscdi=true