Application of a stress sharing model to simulation of particle/fluid parallel flow
A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2006-02, Vol.181 (3-4), p.169-184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | 3-4 |
container_start_page | 169 |
container_title | Acta mechanica |
container_volume | 181 |
creator | VELLANKI, N. S PEDDIESON, J MUNUKUTLA, S |
description | A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase leads the particle phase in an average sense for horizontal flows, the transition from upward average relative velocity to downward average relative velocity occurs at neutral buoyancy in vertical flows with no particle/wall interactions, the average relative velocity is downward for upward flows of negatively buoyant suspensions, and that wall boundary layers are produced by particle/wall interactions. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00707-005-0294-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29026896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29026896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-c4946c125cac68dfc6ce55712024b8798c671e7f00c634a746b5bb891fc85a23</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsfwNsi6G3tJNlNNsdS_AcFD_YesmmiKdnNmuwifntTWhS8zPDg994MD6FrDPcYgC9SHsBLgLoEIqqSnqAZZliUTFB-imYAgMtacDhHFyntsiK8wjP0thwG77QaXeiLYAtVpDGalIr0oaLr34subI0vxlAk103-lxtUHJ32ZmH95LZ7qbzPoPXh6xKdWeWTuTruOdo8PmxWz-X69elltVyXmlI6lroSFdOY1Fpp1mytZtrUNccESNU2XDSacWy4BdCMVopXrK3bthHY6qZWhM7R3SF2iOFzMmmUnUvaeK96E6YkiQDCGsEyePMP3IUp9vk1SQhl-SDDGcIHSMeQUjRWDtF1Kn5LDHJfsTxULHPFcl-xpNlzewxWSStvo-q1S39GXjfQVIz-APvleyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223612061</pqid></control><display><type>article</type><title>Application of a stress sharing model to simulation of particle/fluid parallel flow</title><source>Springer Nature - Complete Springer Journals</source><creator>VELLANKI, N. S ; PEDDIESON, J ; MUNUKUTLA, S</creator><creatorcontrib>VELLANKI, N. S ; PEDDIESON, J ; MUNUKUTLA, S</creatorcontrib><description>A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase leads the particle phase in an average sense for horizontal flows, the transition from upward average relative velocity to downward average relative velocity occurs at neutral buoyancy in vertical flows with no particle/wall interactions, the average relative velocity is downward for upward flows of negatively buoyant suspensions, and that wall boundary layers are produced by particle/wall interactions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-005-0294-3</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Wien: Springer</publisher><subject>Differential equations ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Physics ; Stream flow ; Stress measurement</subject><ispartof>Acta mechanica, 2006-02, Vol.181 (3-4), p.169-184</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag Wien 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-c4946c125cac68dfc6ce55712024b8798c671e7f00c634a746b5bb891fc85a23</citedby><cites>FETCH-LOGICAL-c333t-c4946c125cac68dfc6ce55712024b8798c671e7f00c634a746b5bb891fc85a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17580846$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VELLANKI, N. S</creatorcontrib><creatorcontrib>PEDDIESON, J</creatorcontrib><creatorcontrib>MUNUKUTLA, S</creatorcontrib><title>Application of a stress sharing model to simulation of particle/fluid parallel flow</title><title>Acta mechanica</title><description>A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase leads the particle phase in an average sense for horizontal flows, the transition from upward average relative velocity to downward average relative velocity occurs at neutral buoyancy in vertical flows with no particle/wall interactions, the average relative velocity is downward for upward flows of negatively buoyant suspensions, and that wall boundary layers are produced by particle/wall interactions. [PUBLICATION ABSTRACT]</description><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Stream flow</subject><subject>Stress measurement</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9LAzEQxYMoWKsfwNsi6G3tJNlNNsdS_AcFD_YesmmiKdnNmuwifntTWhS8zPDg994MD6FrDPcYgC9SHsBLgLoEIqqSnqAZZliUTFB-imYAgMtacDhHFyntsiK8wjP0thwG77QaXeiLYAtVpDGalIr0oaLr34subI0vxlAk103-lxtUHJ32ZmH95LZ7qbzPoPXh6xKdWeWTuTruOdo8PmxWz-X69elltVyXmlI6lroSFdOY1Fpp1mytZtrUNccESNU2XDSacWy4BdCMVopXrK3bthHY6qZWhM7R3SF2iOFzMmmUnUvaeK96E6YkiQDCGsEyePMP3IUp9vk1SQhl-SDDGcIHSMeQUjRWDtF1Kn5LDHJfsTxULHPFcl-xpNlzewxWSStvo-q1S39GXjfQVIz-APvleyQ</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>VELLANKI, N. S</creator><creator>PEDDIESON, J</creator><creator>MUNUKUTLA, S</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20060201</creationdate><title>Application of a stress sharing model to simulation of particle/fluid parallel flow</title><author>VELLANKI, N. S ; PEDDIESON, J ; MUNUKUTLA, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-c4946c125cac68dfc6ce55712024b8798c671e7f00c634a746b5bb891fc85a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Stream flow</topic><topic>Stress measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VELLANKI, N. S</creatorcontrib><creatorcontrib>PEDDIESON, J</creatorcontrib><creatorcontrib>MUNUKUTLA, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VELLANKI, N. S</au><au>PEDDIESON, J</au><au>MUNUKUTLA, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a stress sharing model to simulation of particle/fluid parallel flow</atitle><jtitle>Acta mechanica</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>181</volume><issue>3-4</issue><spage>169</spage><epage>184</epage><pages>169-184</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>A set of linear partial differential equations governing particle/fluid two phase parallel flows is developed based on a stress sharing continuum model. The equations are solved in closed form for parallel plate and circular ducts. Some interesting features of the solutions are that the fluid phase leads the particle phase in an average sense for horizontal flows, the transition from upward average relative velocity to downward average relative velocity occurs at neutral buoyancy in vertical flows with no particle/wall interactions, the average relative velocity is downward for upward flows of negatively buoyant suspensions, and that wall boundary layers are produced by particle/wall interactions. [PUBLICATION ABSTRACT]</abstract><cop>Wien</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s00707-005-0294-3</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2006-02, Vol.181 (3-4), p.169-184 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_miscellaneous_29026896 |
source | Springer Nature - Complete Springer Journals |
subjects | Differential equations Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Multiphase and particle-laden flows Nonhomogeneous flows Physics Stream flow Stress measurement |
title | Application of a stress sharing model to simulation of particle/fluid parallel flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20stress%20sharing%20model%20to%20simulation%20of%20particle/fluid%20parallel%20flow&rft.jtitle=Acta%20mechanica&rft.au=VELLANKI,%20N.%20S&rft.date=2006-02-01&rft.volume=181&rft.issue=3-4&rft.spage=169&rft.epage=184&rft.pages=169-184&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-005-0294-3&rft_dat=%3Cproquest_cross%3E29026896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223612061&rft_id=info:pmid/&rfr_iscdi=true |