Root distribution of a polynomial in subregions of complex plane
Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1993-01, Vol.38 (1), p.173-178 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 1 |
container_start_page | 173 |
container_title | IEEE transactions on automatic control |
container_volume | 38 |
creator | Tsai, J.S.H. Chen, S.S. |
description | Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some specified lines. Moreover, to enhance the Routh stability theorem, the extended Routh theorem for finding the numbers of roots of a polynomial lying within some specified regions is proposed.< > |
doi_str_mv | 10.1109/9.186335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29026875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>186335</ieee_id><sourcerecordid>28559072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-74ccb3418a0359a320e004c4e70e65d4dc9dd54b131a7018219f2fe4caf0124d3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI6Ca1dZiLjpmGeb7JTBFwwIouuSpolE0qYmLTj_3gwddOnqcjkfH4cDwDlGK4yRvJErLEpK-QFYYM5FQTihh2CBEBaFJKI8Bicpfea3ZAwvwO1rCCNsXRqja6bRhR4GCxUcgt_2oXPKQ9fDNDXRfOQw7VIdusGbbzh41ZtTcGSVT-Zsf5fg_eH-bf1UbF4en9d3m0LnMmNRMa0byrBQiHKpKEEGIaaZqZApectaLduWswZTrKrclWBpiTVMK4swYS1dgqvZO8TwNZk01p1L2vhdhzClmkhESlHx_0HBuUQVyeD1DOoYUorG1kN0nYrbGqN6t2Ut63nLjF7unSpp5W1UvXbpl2eccyZFxi5mzBlj_myz4wfriHpF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28559072</pqid></control><display><type>article</type><title>Root distribution of a polynomial in subregions of complex plane</title><source>IEEE Electronic Library (IEL)</source><creator>Tsai, J.S.H. ; Chen, S.S.</creator><creatorcontrib>Tsai, J.S.H. ; Chen, S.S.</creatorcontrib><description>Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some specified lines. Moreover, to enhance the Routh stability theorem, the extended Routh theorem for finding the numbers of roots of a polynomial lying within some specified regions is proposed.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.186335</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Exact sciences and technology ; Polynomials ; Programmable control ; Robust control ; Stability analysis ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 1993-01, Vol.38 (1), p.173-178</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-74ccb3418a0359a320e004c4e70e65d4dc9dd54b131a7018219f2fe4caf0124d3</citedby><cites>FETCH-LOGICAL-c335t-74ccb3418a0359a320e004c4e70e65d4dc9dd54b131a7018219f2fe4caf0124d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/186335$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/186335$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4555498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, J.S.H.</creatorcontrib><creatorcontrib>Chen, S.S.</creatorcontrib><title>Root distribution of a polynomial in subregions of complex plane</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some specified lines. Moreover, to enhance the Routh stability theorem, the extended Routh theorem for finding the numbers of roots of a polynomial lying within some specified regions is proposed.< ></description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Polynomials</subject><subject>Programmable control</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI6Ca1dZiLjpmGeb7JTBFwwIouuSpolE0qYmLTj_3gwddOnqcjkfH4cDwDlGK4yRvJErLEpK-QFYYM5FQTihh2CBEBaFJKI8Bicpfea3ZAwvwO1rCCNsXRqja6bRhR4GCxUcgt_2oXPKQ9fDNDXRfOQw7VIdusGbbzh41ZtTcGSVT-Zsf5fg_eH-bf1UbF4en9d3m0LnMmNRMa0byrBQiHKpKEEGIaaZqZApectaLduWswZTrKrclWBpiTVMK4swYS1dgqvZO8TwNZk01p1L2vhdhzClmkhESlHx_0HBuUQVyeD1DOoYUorG1kN0nYrbGqN6t2Ut63nLjF7unSpp5W1UvXbpl2eccyZFxi5mzBlj_myz4wfriHpF</recordid><startdate>199301</startdate><enddate>199301</enddate><creator>Tsai, J.S.H.</creator><creator>Chen, S.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>199301</creationdate><title>Root distribution of a polynomial in subregions of complex plane</title><author>Tsai, J.S.H. ; Chen, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-74ccb3418a0359a320e004c4e70e65d4dc9dd54b131a7018219f2fe4caf0124d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Polynomials</topic><topic>Programmable control</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, J.S.H.</creatorcontrib><creatorcontrib>Chen, S.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsai, J.S.H.</au><au>Chen, S.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root distribution of a polynomial in subregions of complex plane</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1993-01</date><risdate>1993</risdate><volume>38</volume><issue>1</issue><spage>173</spage><epage>178</epage><pages>173-178</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some specified lines. Moreover, to enhance the Routh stability theorem, the extended Routh theorem for finding the numbers of roots of a polynomial lying within some specified regions is proposed.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.186335</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1993-01, Vol.38 (1), p.173-178 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_29026875 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Adaptive systems Applied sciences Automatic control Computer science control theory systems Control system analysis Control theory. Systems Exact sciences and technology Polynomials Programmable control Robust control Stability analysis Uncertainty |
title | Root distribution of a polynomial in subregions of complex plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root%20distribution%20of%20a%20polynomial%20in%20subregions%20of%20complex%20plane&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Tsai,%20J.S.H.&rft.date=1993-01&rft.volume=38&rft.issue=1&rft.spage=173&rft.epage=178&rft.pages=173-178&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.186335&rft_dat=%3Cproquest_RIE%3E28559072%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28559072&rft_id=info:pmid/&rft_ieee_id=186335&rfr_iscdi=true |