Root distribution of a polynomial in subregions of complex plane

Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1993-01, Vol.38 (1), p.173-178
Hauptverfasser: Tsai, J.S.H., Chen, S.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 1
container_start_page 173
container_title IEEE transactions on automatic control
container_volume 38
creator Tsai, J.S.H.
Chen, S.S.
description Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some specified lines. Moreover, to enhance the Routh stability theorem, the extended Routh theorem for finding the numbers of roots of a polynomial lying within some specified regions is proposed.< >
doi_str_mv 10.1109/9.186335
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29026875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>186335</ieee_id><sourcerecordid>28559072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-74ccb3418a0359a320e004c4e70e65d4dc9dd54b131a7018219f2fe4caf0124d3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI6Ca1dZiLjpmGeb7JTBFwwIouuSpolE0qYmLTj_3gwddOnqcjkfH4cDwDlGK4yRvJErLEpK-QFYYM5FQTihh2CBEBaFJKI8Bicpfea3ZAwvwO1rCCNsXRqja6bRhR4GCxUcgt_2oXPKQ9fDNDXRfOQw7VIdusGbbzh41ZtTcGSVT-Zsf5fg_eH-bf1UbF4en9d3m0LnMmNRMa0byrBQiHKpKEEGIaaZqZApectaLduWswZTrKrclWBpiTVMK4swYS1dgqvZO8TwNZk01p1L2vhdhzClmkhESlHx_0HBuUQVyeD1DOoYUorG1kN0nYrbGqN6t2Ut63nLjF7unSpp5W1UvXbpl2eccyZFxi5mzBlj_myz4wfriHpF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28559072</pqid></control><display><type>article</type><title>Root distribution of a polynomial in subregions of complex plane</title><source>IEEE Electronic Library (IEL)</source><creator>Tsai, J.S.H. ; Chen, S.S.</creator><creatorcontrib>Tsai, J.S.H. ; Chen, S.S.</creatorcontrib><description>Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some specified lines. Moreover, to enhance the Routh stability theorem, the extended Routh theorem for finding the numbers of roots of a polynomial lying within some specified regions is proposed.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.186335</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Exact sciences and technology ; Polynomials ; Programmable control ; Robust control ; Stability analysis ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 1993-01, Vol.38 (1), p.173-178</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-74ccb3418a0359a320e004c4e70e65d4dc9dd54b131a7018219f2fe4caf0124d3</citedby><cites>FETCH-LOGICAL-c335t-74ccb3418a0359a320e004c4e70e65d4dc9dd54b131a7018219f2fe4caf0124d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/186335$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/186335$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4555498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, J.S.H.</creatorcontrib><creatorcontrib>Chen, S.S.</creatorcontrib><title>Root distribution of a polynomial in subregions of complex plane</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some specified lines. Moreover, to enhance the Routh stability theorem, the extended Routh theorem for finding the numbers of roots of a polynomial lying within some specified regions is proposed.&lt; &gt;</description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Polynomials</subject><subject>Programmable control</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI6Ca1dZiLjpmGeb7JTBFwwIouuSpolE0qYmLTj_3gwddOnqcjkfH4cDwDlGK4yRvJErLEpK-QFYYM5FQTihh2CBEBaFJKI8Bicpfea3ZAwvwO1rCCNsXRqja6bRhR4GCxUcgt_2oXPKQ9fDNDXRfOQw7VIdusGbbzh41ZtTcGSVT-Zsf5fg_eH-bf1UbF4en9d3m0LnMmNRMa0byrBQiHKpKEEGIaaZqZApectaLduWswZTrKrclWBpiTVMK4swYS1dgqvZO8TwNZk01p1L2vhdhzClmkhESlHx_0HBuUQVyeD1DOoYUorG1kN0nYrbGqN6t2Ut63nLjF7unSpp5W1UvXbpl2eccyZFxi5mzBlj_myz4wfriHpF</recordid><startdate>199301</startdate><enddate>199301</enddate><creator>Tsai, J.S.H.</creator><creator>Chen, S.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>199301</creationdate><title>Root distribution of a polynomial in subregions of complex plane</title><author>Tsai, J.S.H. ; Chen, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-74ccb3418a0359a320e004c4e70e65d4dc9dd54b131a7018219f2fe4caf0124d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Polynomials</topic><topic>Programmable control</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, J.S.H.</creatorcontrib><creatorcontrib>Chen, S.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsai, J.S.H.</au><au>Chen, S.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root distribution of a polynomial in subregions of complex plane</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1993-01</date><risdate>1993</risdate><volume>38</volume><issue>1</issue><spage>173</spage><epage>178</epage><pages>173-178</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Modified processes are proposed for directly treating singularities in the Routh array, and procedures are developed for determining the respective orders of simple and/or repeated roots lying on the imaginary axis. The extended Sturm test is developed for determining the root distribution on some specified lines. Moreover, to enhance the Routh stability theorem, the extended Routh theorem for finding the numbers of roots of a polynomial lying within some specified regions is proposed.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.186335</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1993-01, Vol.38 (1), p.173-178
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_29026875
source IEEE Electronic Library (IEL)
subjects Adaptive control
Adaptive systems
Applied sciences
Automatic control
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Exact sciences and technology
Polynomials
Programmable control
Robust control
Stability analysis
Uncertainty
title Root distribution of a polynomial in subregions of complex plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root%20distribution%20of%20a%20polynomial%20in%20subregions%20of%20complex%20plane&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Tsai,%20J.S.H.&rft.date=1993-01&rft.volume=38&rft.issue=1&rft.spage=173&rft.epage=178&rft.pages=173-178&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.186335&rft_dat=%3Cproquest_RIE%3E28559072%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28559072&rft_id=info:pmid/&rft_ieee_id=186335&rfr_iscdi=true