Scale-sensitive dimensions, uniform convergence, and learnability

Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 1997-07, Vol.44 (4), p.615-631
Hauptverfasser: Alon, Noga, Ben-David, Shai, Cesa-Bianchi, Nicolo, Haussler, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 631
container_issue 4
container_start_page 615
container_title Journal of the ACM
container_volume 44
creator Alon, Noga
Ben-David, Shai
Cesa-Bianchi, Nicolo
Haussler, David
description Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform Glivenko-Cantelli classes. In this paper, we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform Glivenko-Cantelli classes. Our characterization yields Dudley, Gine´, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a Gine´, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the Vapnik-Chervonenkis dimension. We apply this result to obtain the weakest combinatorial condition known to imply PAC learnability in the statistical regression (or “agnostic”) framework. Furthermore, we find a characterization of learnability in the probabilistic concept model, solving an open problem posed by Kearns and Schapire. These results show that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class.
doi_str_mv 10.1145/263867.263927
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29026690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27336350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-77d2e02118c050a6d43ababb809bb9711499edfb127dc51c79f283b43996195e3</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAgCq6rR-_Fg3jYrpOkSZrjIn7BggcVvJUkTSVLm65Ju7D_3iz15EFPMwMPAzMvQpcYlhgX7JZwWnKxTEUScYRmmDGRC8o-jtEMAIqcFRiforMYN2kEAmKGVq9GtTaP1kc3uJ3Natcd-t7HRTZ61_Shy0zvdzZ8Wm_sIlO-zlqrglfatW7Yn6OTRrXRXvzUOXp_uH-7e8rXL4_Pd6t1bgpOhlyImlggGJcGGCheF1RppXUJUmsp0gFS2rrRmIjaMGyEbEhJdUGl5FgyS-foetq7Df3XaONQdS4a27bK236MFZFAOJfwPxSUcsoO8OZPiEsoQRAuWKJXv-imH9ML2qRkQUhaJxLKJ2RCH2OwTbUNrlNhX2GoDglVU0LVlBD9BkU6gRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194223507</pqid></control><display><type>article</type><title>Scale-sensitive dimensions, uniform convergence, and learnability</title><source>ACM Digital Library</source><creator>Alon, Noga ; Ben-David, Shai ; Cesa-Bianchi, Nicolo ; Haussler, David</creator><creatorcontrib>Alon, Noga ; Ben-David, Shai ; Cesa-Bianchi, Nicolo ; Haussler, David</creatorcontrib><description>Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform Glivenko-Cantelli classes. In this paper, we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform Glivenko-Cantelli classes. Our characterization yields Dudley, Gine´, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a Gine´, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the Vapnik-Chervonenkis dimension. We apply this result to obtain the weakest combinatorial condition known to imply PAC learnability in the statistical regression (or “agnostic”) framework. Furthermore, we find a characterization of learnability in the probabilistic concept model, solving an open problem posed by Kearns and Schapire. These results show that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/263867.263927</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York: Association for Computing Machinery</publisher><subject>Artificial intelligence ; Combinatorial analysis ; Computer programming ; Convergence ; Hypotheses ; Learning ; Mathematical functions ; Mathematical models ; Mathematics ; Probabilistic methods ; Probability theory ; Random variables ; Regression ; Studies</subject><ispartof>Journal of the ACM, 1997-07, Vol.44 (4), p.615-631</ispartof><rights>Copyright Association for Computing Machinery Jul 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-77d2e02118c050a6d43ababb809bb9711499edfb127dc51c79f283b43996195e3</citedby><cites>FETCH-LOGICAL-c462t-77d2e02118c050a6d43ababb809bb9711499edfb127dc51c79f283b43996195e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Ben-David, Shai</creatorcontrib><creatorcontrib>Cesa-Bianchi, Nicolo</creatorcontrib><creatorcontrib>Haussler, David</creatorcontrib><title>Scale-sensitive dimensions, uniform convergence, and learnability</title><title>Journal of the ACM</title><description>Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform Glivenko-Cantelli classes. In this paper, we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform Glivenko-Cantelli classes. Our characterization yields Dudley, Gine´, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a Gine´, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the Vapnik-Chervonenkis dimension. We apply this result to obtain the weakest combinatorial condition known to imply PAC learnability in the statistical regression (or “agnostic”) framework. Furthermore, we find a characterization of learnability in the probabilistic concept model, solving an open problem posed by Kearns and Schapire. These results show that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class.</description><subject>Artificial intelligence</subject><subject>Combinatorial analysis</subject><subject>Computer programming</subject><subject>Convergence</subject><subject>Hypotheses</subject><subject>Learning</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Regression</subject><subject>Studies</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LxDAQBuAgCq6rR-_Fg3jYrpOkSZrjIn7BggcVvJUkTSVLm65Ju7D_3iz15EFPMwMPAzMvQpcYlhgX7JZwWnKxTEUScYRmmDGRC8o-jtEMAIqcFRiforMYN2kEAmKGVq9GtTaP1kc3uJ3Natcd-t7HRTZ61_Shy0zvdzZ8Wm_sIlO-zlqrglfatW7Yn6OTRrXRXvzUOXp_uH-7e8rXL4_Pd6t1bgpOhlyImlggGJcGGCheF1RppXUJUmsp0gFS2rrRmIjaMGyEbEhJdUGl5FgyS-foetq7Df3XaONQdS4a27bK236MFZFAOJfwPxSUcsoO8OZPiEsoQRAuWKJXv-imH9ML2qRkQUhaJxLKJ2RCH2OwTbUNrlNhX2GoDglVU0LVlBD9BkU6gRI</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Alon, Noga</creator><creator>Ben-David, Shai</creator><creator>Cesa-Bianchi, Nicolo</creator><creator>Haussler, David</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970701</creationdate><title>Scale-sensitive dimensions, uniform convergence, and learnability</title><author>Alon, Noga ; Ben-David, Shai ; Cesa-Bianchi, Nicolo ; Haussler, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-77d2e02118c050a6d43ababb809bb9711499edfb127dc51c79f283b43996195e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Artificial intelligence</topic><topic>Combinatorial analysis</topic><topic>Computer programming</topic><topic>Convergence</topic><topic>Hypotheses</topic><topic>Learning</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Regression</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Ben-David, Shai</creatorcontrib><creatorcontrib>Cesa-Bianchi, Nicolo</creatorcontrib><creatorcontrib>Haussler, David</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alon, Noga</au><au>Ben-David, Shai</au><au>Cesa-Bianchi, Nicolo</au><au>Haussler, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scale-sensitive dimensions, uniform convergence, and learnability</atitle><jtitle>Journal of the ACM</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>44</volume><issue>4</issue><spage>615</spage><epage>631</epage><pages>615-631</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform Glivenko-Cantelli classes. In this paper, we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform Glivenko-Cantelli classes. Our characterization yields Dudley, Gine´, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a Gine´, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the Vapnik-Chervonenkis dimension. We apply this result to obtain the weakest combinatorial condition known to imply PAC learnability in the statistical regression (or “agnostic”) framework. Furthermore, we find a characterization of learnability in the probabilistic concept model, solving an open problem posed by Kearns and Schapire. These results show that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class.</abstract><cop>New York</cop><pub>Association for Computing Machinery</pub><doi>10.1145/263867.263927</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 1997-07, Vol.44 (4), p.615-631
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_miscellaneous_29026690
source ACM Digital Library
subjects Artificial intelligence
Combinatorial analysis
Computer programming
Convergence
Hypotheses
Learning
Mathematical functions
Mathematical models
Mathematics
Probabilistic methods
Probability theory
Random variables
Regression
Studies
title Scale-sensitive dimensions, uniform convergence, and learnability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scale-sensitive%20dimensions,%20uniform%20convergence,%20and%20learnability&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Alon,%20Noga&rft.date=1997-07-01&rft.volume=44&rft.issue=4&rft.spage=615&rft.epage=631&rft.pages=615-631&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/263867.263927&rft_dat=%3Cproquest_cross%3E27336350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194223507&rft_id=info:pmid/&rfr_iscdi=true