On the Hysteretic Bouc–Wen Model
This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. H...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2005-10, Vol.42 (1), p.63-78 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Nonlinear dynamics |
container_volume | 42 |
creator | Ikhouane, Fayçal Rodellar, José |
description | This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. However, it has never been proved analytically that a T-periodic input leads to a T-periodic output for the Bouc–Wen model. Furthermore, an analytical expression of the limit cycle is lacking. The objective of this paper is to fill this gap by proving that the response of the Bouc–Wen model to a class of T-periodic inputs of practical interest in identification procedures is T-periodic. We also provide an exact explicit description of the limit cycle which will be used in the companion paper to derive an identification method for the Bouc–Wen model parameters. |
doi_str_mv | 10.1007/s11071-005-0069-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29020960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259469015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-a72806d88544c5ee8fec33fc151c31042b9bc7d366f5bba01269c3711c3ce8173</originalsourceid><addsrcrecordid>eNpdjr1KxEAUhQdRMK4-gF1QsBu9dybzV-qyusLKNorbheTmBneJiWaSws538A19EgNaWRxOcT4OnxCnCJcI4K4iIjiUAGaKDVLviQSN01LZsNkXCQSVSQiwORRHMe4AQCvwiThbt-nwwunyIw7c87Cl9KYb6fvz65nb9KGruDkWB3XRRD7565l4ul08zpdytb67n1-vJGFQgyyc8mAr702WkWH2NZPWNaFB0giZKkNJrtLW1qYsC8DJjLTDaSX26PRMXPz-vvXd-8hxyF-3kbhpipa7MeYqgIJgYQLP_4G7buzbyS1XyoTMBkCjfwAo903B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259469015</pqid></control><display><type>article</type><title>On the Hysteretic Bouc–Wen Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ikhouane, Fayçal ; Rodellar, José</creator><creatorcontrib>Ikhouane, Fayçal ; Rodellar, José</creatorcontrib><description>This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. However, it has never been proved analytically that a T-periodic input leads to a T-periodic output for the Bouc–Wen model. Furthermore, an analytical expression of the limit cycle is lacking. The objective of this paper is to fill this gap by proving that the response of the Bouc–Wen model to a class of T-periodic inputs of practical interest in identification procedures is T-periodic. We also provide an exact explicit description of the limit cycle which will be used in the companion paper to derive an identification method for the Bouc–Wen model parameters.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-005-0069-3</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Chaos theory ; Mathematical models ; Parameter identification ; Renewable resources</subject><ispartof>Nonlinear dynamics, 2005-10, Vol.42 (1), p.63-78</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (2005). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c192t-a72806d88544c5ee8fec33fc151c31042b9bc7d366f5bba01269c3711c3ce8173</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ikhouane, Fayçal</creatorcontrib><creatorcontrib>Rodellar, José</creatorcontrib><title>On the Hysteretic Bouc–Wen Model</title><title>Nonlinear dynamics</title><description>This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. However, it has never been proved analytically that a T-periodic input leads to a T-periodic output for the Bouc–Wen model. Furthermore, an analytical expression of the limit cycle is lacking. The objective of this paper is to fill this gap by proving that the response of the Bouc–Wen model to a class of T-periodic inputs of practical interest in identification procedures is T-periodic. We also provide an exact explicit description of the limit cycle which will be used in the companion paper to derive an identification method for the Bouc–Wen model parameters.</description><subject>Chaos theory</subject><subject>Mathematical models</subject><subject>Parameter identification</subject><subject>Renewable resources</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdjr1KxEAUhQdRMK4-gF1QsBu9dybzV-qyusLKNorbheTmBneJiWaSws538A19EgNaWRxOcT4OnxCnCJcI4K4iIjiUAGaKDVLviQSN01LZsNkXCQSVSQiwORRHMe4AQCvwiThbt-nwwunyIw7c87Cl9KYb6fvz65nb9KGruDkWB3XRRD7565l4ul08zpdytb67n1-vJGFQgyyc8mAr702WkWH2NZPWNaFB0giZKkNJrtLW1qYsC8DJjLTDaSX26PRMXPz-vvXd-8hxyF-3kbhpipa7MeYqgIJgYQLP_4G7buzbyS1XyoTMBkCjfwAo903B</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Ikhouane, Fayçal</creator><creator>Rodellar, José</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051001</creationdate><title>On the Hysteretic Bouc–Wen Model</title><author>Ikhouane, Fayçal ; Rodellar, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-a72806d88544c5ee8fec33fc151c31042b9bc7d366f5bba01269c3711c3ce8173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chaos theory</topic><topic>Mathematical models</topic><topic>Parameter identification</topic><topic>Renewable resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikhouane, Fayçal</creatorcontrib><creatorcontrib>Rodellar, José</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikhouane, Fayçal</au><au>Rodellar, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Hysteretic Bouc–Wen Model</atitle><jtitle>Nonlinear dynamics</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>42</volume><issue>1</issue><spage>63</spage><epage>78</epage><pages>63-78</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. However, it has never been proved analytically that a T-periodic input leads to a T-periodic output for the Bouc–Wen model. Furthermore, an analytical expression of the limit cycle is lacking. The objective of this paper is to fill this gap by proving that the response of the Bouc–Wen model to a class of T-periodic inputs of practical interest in identification procedures is T-periodic. We also provide an exact explicit description of the limit cycle which will be used in the companion paper to derive an identification method for the Bouc–Wen model parameters.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11071-005-0069-3</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2005-10, Vol.42 (1), p.63-78 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_miscellaneous_29020960 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chaos theory Mathematical models Parameter identification Renewable resources |
title | On the Hysteretic Bouc–Wen Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Hysteretic%20Bouc%E2%80%93Wen%20Model&rft.jtitle=Nonlinear%20dynamics&rft.au=Ikhouane,%20Fay%C3%A7al&rft.date=2005-10-01&rft.volume=42&rft.issue=1&rft.spage=63&rft.epage=78&rft.pages=63-78&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-005-0069-3&rft_dat=%3Cproquest%3E2259469015%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259469015&rft_id=info:pmid/&rfr_iscdi=true |