On the Hysteretic Bouc–Wen Model

This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2005-10, Vol.42 (1), p.63-78
Hauptverfasser: Ikhouane, Fayçal, Rodellar, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 63
container_title Nonlinear dynamics
container_volume 42
creator Ikhouane, Fayçal
Rodellar, José
description This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. However, it has never been proved analytically that a T-periodic input leads to a T-periodic output for the Bouc–Wen model. Furthermore, an analytical expression of the limit cycle is lacking. The objective of this paper is to fill this gap by proving that the response of the Bouc–Wen model to a class of T-periodic inputs of practical interest in identification procedures is T-periodic. We also provide an exact explicit description of the limit cycle which will be used in the companion paper to derive an identification method for the Bouc–Wen model parameters.
doi_str_mv 10.1007/s11071-005-0069-3
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29020960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259469015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-a72806d88544c5ee8fec33fc151c31042b9bc7d366f5bba01269c3711c3ce8173</originalsourceid><addsrcrecordid>eNpdjr1KxEAUhQdRMK4-gF1QsBu9dybzV-qyusLKNorbheTmBneJiWaSws538A19EgNaWRxOcT4OnxCnCJcI4K4iIjiUAGaKDVLviQSN01LZsNkXCQSVSQiwORRHMe4AQCvwiThbt-nwwunyIw7c87Cl9KYb6fvz65nb9KGruDkWB3XRRD7565l4ul08zpdytb67n1-vJGFQgyyc8mAr702WkWH2NZPWNaFB0giZKkNJrtLW1qYsC8DJjLTDaSX26PRMXPz-vvXd-8hxyF-3kbhpipa7MeYqgIJgYQLP_4G7buzbyS1XyoTMBkCjfwAo903B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259469015</pqid></control><display><type>article</type><title>On the Hysteretic Bouc–Wen Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ikhouane, Fayçal ; Rodellar, José</creator><creatorcontrib>Ikhouane, Fayçal ; Rodellar, José</creatorcontrib><description>This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. However, it has never been proved analytically that a T-periodic input leads to a T-periodic output for the Bouc–Wen model. Furthermore, an analytical expression of the limit cycle is lacking. The objective of this paper is to fill this gap by proving that the response of the Bouc–Wen model to a class of T-periodic inputs of practical interest in identification procedures is T-periodic. We also provide an exact explicit description of the limit cycle which will be used in the companion paper to derive an identification method for the Bouc–Wen model parameters.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-005-0069-3</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Chaos theory ; Mathematical models ; Parameter identification ; Renewable resources</subject><ispartof>Nonlinear dynamics, 2005-10, Vol.42 (1), p.63-78</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (2005). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c192t-a72806d88544c5ee8fec33fc151c31042b9bc7d366f5bba01269c3711c3ce8173</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ikhouane, Fayçal</creatorcontrib><creatorcontrib>Rodellar, José</creatorcontrib><title>On the Hysteretic Bouc–Wen Model</title><title>Nonlinear dynamics</title><description>This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. However, it has never been proved analytically that a T-periodic input leads to a T-periodic output for the Bouc–Wen model. Furthermore, an analytical expression of the limit cycle is lacking. The objective of this paper is to fill this gap by proving that the response of the Bouc–Wen model to a class of T-periodic inputs of practical interest in identification procedures is T-periodic. We also provide an exact explicit description of the limit cycle which will be used in the companion paper to derive an identification method for the Bouc–Wen model parameters.</description><subject>Chaos theory</subject><subject>Mathematical models</subject><subject>Parameter identification</subject><subject>Renewable resources</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdjr1KxEAUhQdRMK4-gF1QsBu9dybzV-qyusLKNorbheTmBneJiWaSws538A19EgNaWRxOcT4OnxCnCJcI4K4iIjiUAGaKDVLviQSN01LZsNkXCQSVSQiwORRHMe4AQCvwiThbt-nwwunyIw7c87Cl9KYb6fvz65nb9KGruDkWB3XRRD7565l4ul08zpdytb67n1-vJGFQgyyc8mAr702WkWH2NZPWNaFB0giZKkNJrtLW1qYsC8DJjLTDaSX26PRMXPz-vvXd-8hxyF-3kbhpipa7MeYqgIJgYQLP_4G7buzbyS1XyoTMBkCjfwAo903B</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Ikhouane, Fayçal</creator><creator>Rodellar, José</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051001</creationdate><title>On the Hysteretic Bouc–Wen Model</title><author>Ikhouane, Fayçal ; Rodellar, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-a72806d88544c5ee8fec33fc151c31042b9bc7d366f5bba01269c3711c3ce8173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chaos theory</topic><topic>Mathematical models</topic><topic>Parameter identification</topic><topic>Renewable resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikhouane, Fayçal</creatorcontrib><creatorcontrib>Rodellar, José</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikhouane, Fayçal</au><au>Rodellar, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Hysteretic Bouc–Wen Model</atitle><jtitle>Nonlinear dynamics</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>42</volume><issue>1</issue><spage>63</spage><epage>78</epage><pages>63-78</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. However, it has never been proved analytically that a T-periodic input leads to a T-periodic output for the Bouc–Wen model. Furthermore, an analytical expression of the limit cycle is lacking. The objective of this paper is to fill this gap by proving that the response of the Bouc–Wen model to a class of T-periodic inputs of practical interest in identification procedures is T-periodic. We also provide an exact explicit description of the limit cycle which will be used in the companion paper to derive an identification method for the Bouc–Wen model parameters.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11071-005-0069-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2005-10, Vol.42 (1), p.63-78
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_29020960
source SpringerLink Journals - AutoHoldings
subjects Chaos theory
Mathematical models
Parameter identification
Renewable resources
title On the Hysteretic Bouc–Wen Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Hysteretic%20Bouc%E2%80%93Wen%20Model&rft.jtitle=Nonlinear%20dynamics&rft.au=Ikhouane,%20Fay%C3%A7al&rft.date=2005-10-01&rft.volume=42&rft.issue=1&rft.spage=63&rft.epage=78&rft.pages=63-78&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-005-0069-3&rft_dat=%3Cproquest%3E2259469015%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259469015&rft_id=info:pmid/&rfr_iscdi=true