A projection approach to covariance equivalent realizations of discrete systems
Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1986-12, Vol.31 (12), p.1114-1120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1120 |
---|---|
container_issue | 12 |
container_start_page | 1114 |
container_title | IEEE transactions on automatic control |
container_volume | 31 |
creator | Wagie, D. Skelton, R. |
description | Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model. In controller reduction, it produces a reduced controller that is "close" to matching q + 1 output covariances of the full-order controller, and q Markov parameters of the closed-loop system. For discrete systems, a method was devised to produce a reduced-order model that matches the q + 1 covariances [6], but not any Markov parameters. This method requires a factorization to obtain the input matrix, and since the dimension of this matrix factor depends upon rank properties not known a priori, this method may not maintain the original dimension of the input vector. Hence, this method [6] is obviously not suitable for controller reduction. A new projection method is described that matches q covariances and q Markov parameters of the original system while maintaining the correct dimension of the input vector. |
doi_str_mv | 10.1109/TAC.1986.1104193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29008772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1104193</ieee_id><sourcerecordid>24207110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a3d7244c9e64cd8351901b8115de02202802a4cc9ee6ab482993f00a2920af493</originalsourceid><addsrcrecordid>eNqFkUtrwzAQhEVpoenjXuhFh9KbU71sS8cQ-oJALulZbOQ1VXDsRHIC6a-vTEJ7zGkZ9tthmSHkgbMx58y8LCbTMTe6GJTiRl6QEc9znYlcyEsyYozrzAhdXJObGFdJFkrxEZlP6CZ0K3S971oKmyTAfdO-o67bQ_DQOqS43fk9NNj2NCA0_gcGOtKuppWPLmCPNB5ij-t4R65qaCLen-Yt-Xp7XUw_stn8_XM6mWVOatlnIKtSKOUMFspVWubcML7UnOcVMiGY0EyAcmmPBSyVFsbImjEQRjColZG35Pnomx7e7jD2dp0-waaBFrtdtMIwpstSnAd1CkgpeR5UgpUp3ASyI-hCF2PA2m6CX0M4WM7s0IVNXdihC3vqIp08nbwhOmjqkGL18e9OCyELyRP2eMQ8Iv67nkx-ATaSkTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24207110</pqid></control><display><type>article</type><title>A projection approach to covariance equivalent realizations of discrete systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wagie, D. ; Skelton, R.</creator><creatorcontrib>Wagie, D. ; Skelton, R.</creatorcontrib><description>Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model. In controller reduction, it produces a reduced controller that is "close" to matching q + 1 output covariances of the full-order controller, and q Markov parameters of the closed-loop system. For discrete systems, a method was devised to produce a reduced-order model that matches the q + 1 covariances [6], but not any Markov parameters. This method requires a factorization to obtain the input matrix, and since the dimension of this matrix factor depends upon rank properties not known a priori, this method may not maintain the original dimension of the input vector. Hence, this method [6] is obviously not suitable for controller reduction. A new projection method is described that matches q covariances and q Markov parameters of the original system while maintaining the correct dimension of the input vector.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1986.1104193</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation methods ; Autocorrelation ; Computer science; control theory; systems ; Continuous time systems ; Control systems ; Control theory. Systems ; Covariance matrix ; Exact sciences and technology ; Flexible structures ; Reduced order systems ; Remuneration ; System theory ; Systems engineering and theory ; Vibration control</subject><ispartof>IEEE transactions on automatic control, 1986-12, Vol.31 (12), p.1114-1120</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a3d7244c9e64cd8351901b8115de02202802a4cc9ee6ab482993f00a2920af493</citedby><cites>FETCH-LOGICAL-c383t-a3d7244c9e64cd8351901b8115de02202802a4cc9ee6ab482993f00a2920af493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1104193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1104193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8223631$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagie, D.</creatorcontrib><creatorcontrib>Skelton, R.</creatorcontrib><title>A projection approach to covariance equivalent realizations of discrete systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model. In controller reduction, it produces a reduced controller that is "close" to matching q + 1 output covariances of the full-order controller, and q Markov parameters of the closed-loop system. For discrete systems, a method was devised to produce a reduced-order model that matches the q + 1 covariances [6], but not any Markov parameters. This method requires a factorization to obtain the input matrix, and since the dimension of this matrix factor depends upon rank properties not known a priori, this method may not maintain the original dimension of the input vector. Hence, this method [6] is obviously not suitable for controller reduction. A new projection method is described that matches q covariances and q Markov parameters of the original system while maintaining the correct dimension of the input vector.</description><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Autocorrelation</subject><subject>Computer science; control theory; systems</subject><subject>Continuous time systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Covariance matrix</subject><subject>Exact sciences and technology</subject><subject>Flexible structures</subject><subject>Reduced order systems</subject><subject>Remuneration</subject><subject>System theory</subject><subject>Systems engineering and theory</subject><subject>Vibration control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFkUtrwzAQhEVpoenjXuhFh9KbU71sS8cQ-oJALulZbOQ1VXDsRHIC6a-vTEJ7zGkZ9tthmSHkgbMx58y8LCbTMTe6GJTiRl6QEc9znYlcyEsyYozrzAhdXJObGFdJFkrxEZlP6CZ0K3S971oKmyTAfdO-o67bQ_DQOqS43fk9NNj2NCA0_gcGOtKuppWPLmCPNB5ij-t4R65qaCLen-Yt-Xp7XUw_stn8_XM6mWVOatlnIKtSKOUMFspVWubcML7UnOcVMiGY0EyAcmmPBSyVFsbImjEQRjColZG35Pnomx7e7jD2dp0-waaBFrtdtMIwpstSnAd1CkgpeR5UgpUp3ASyI-hCF2PA2m6CX0M4WM7s0IVNXdihC3vqIp08nbwhOmjqkGL18e9OCyELyRP2eMQ8Iv67nkx-ATaSkTE</recordid><startdate>19861201</startdate><enddate>19861201</enddate><creator>Wagie, D.</creator><creator>Skelton, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19861201</creationdate><title>A projection approach to covariance equivalent realizations of discrete systems</title><author>Wagie, D. ; Skelton, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a3d7244c9e64cd8351901b8115de02202802a4cc9ee6ab482993f00a2920af493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Autocorrelation</topic><topic>Computer science; control theory; systems</topic><topic>Continuous time systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Covariance matrix</topic><topic>Exact sciences and technology</topic><topic>Flexible structures</topic><topic>Reduced order systems</topic><topic>Remuneration</topic><topic>System theory</topic><topic>Systems engineering and theory</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagie, D.</creatorcontrib><creatorcontrib>Skelton, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wagie, D.</au><au>Skelton, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A projection approach to covariance equivalent realizations of discrete systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1986-12-01</date><risdate>1986</risdate><volume>31</volume><issue>12</issue><spage>1114</spage><epage>1120</epage><pages>1114-1120</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model. In controller reduction, it produces a reduced controller that is "close" to matching q + 1 output covariances of the full-order controller, and q Markov parameters of the closed-loop system. For discrete systems, a method was devised to produce a reduced-order model that matches the q + 1 covariances [6], but not any Markov parameters. This method requires a factorization to obtain the input matrix, and since the dimension of this matrix factor depends upon rank properties not known a priori, this method may not maintain the original dimension of the input vector. Hence, this method [6] is obviously not suitable for controller reduction. A new projection method is described that matches q covariances and q Markov parameters of the original system while maintaining the correct dimension of the input vector.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1986.1104193</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1986-12, Vol.31 (12), p.1114-1120 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_29008772 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Approximation methods Autocorrelation Computer science control theory systems Continuous time systems Control systems Control theory. Systems Covariance matrix Exact sciences and technology Flexible structures Reduced order systems Remuneration System theory Systems engineering and theory Vibration control |
title | A projection approach to covariance equivalent realizations of discrete systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20projection%20approach%20to%20covariance%20equivalent%20realizations%20of%20discrete%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Wagie,%20D.&rft.date=1986-12-01&rft.volume=31&rft.issue=12&rft.spage=1114&rft.epage=1120&rft.pages=1114-1120&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1986.1104193&rft_dat=%3Cproquest_RIE%3E24207110%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24207110&rft_id=info:pmid/&rft_ieee_id=1104193&rfr_iscdi=true |