A projection approach to covariance equivalent realizations of discrete systems

Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1986-12, Vol.31 (12), p.1114-1120
Hauptverfasser: Wagie, D., Skelton, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1120
container_issue 12
container_start_page 1114
container_title IEEE transactions on automatic control
container_volume 31
creator Wagie, D.
Skelton, R.
description Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model. In controller reduction, it produces a reduced controller that is "close" to matching q + 1 output covariances of the full-order controller, and q Markov parameters of the closed-loop system. For discrete systems, a method was devised to produce a reduced-order model that matches the q + 1 covariances [6], but not any Markov parameters. This method requires a factorization to obtain the input matrix, and since the dimension of this matrix factor depends upon rank properties not known a priori, this method may not maintain the original dimension of the input vector. Hence, this method [6] is obviously not suitable for controller reduction. A new projection method is described that matches q covariances and q Markov parameters of the original system while maintaining the correct dimension of the input vector.
doi_str_mv 10.1109/TAC.1986.1104193
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29008772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1104193</ieee_id><sourcerecordid>24207110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a3d7244c9e64cd8351901b8115de02202802a4cc9ee6ab482993f00a2920af493</originalsourceid><addsrcrecordid>eNqFkUtrwzAQhEVpoenjXuhFh9KbU71sS8cQ-oJALulZbOQ1VXDsRHIC6a-vTEJ7zGkZ9tthmSHkgbMx58y8LCbTMTe6GJTiRl6QEc9znYlcyEsyYozrzAhdXJObGFdJFkrxEZlP6CZ0K3S971oKmyTAfdO-o67bQ_DQOqS43fk9NNj2NCA0_gcGOtKuppWPLmCPNB5ij-t4R65qaCLen-Yt-Xp7XUw_stn8_XM6mWVOatlnIKtSKOUMFspVWubcML7UnOcVMiGY0EyAcmmPBSyVFsbImjEQRjColZG35Pnomx7e7jD2dp0-waaBFrtdtMIwpstSnAd1CkgpeR5UgpUp3ASyI-hCF2PA2m6CX0M4WM7s0IVNXdihC3vqIp08nbwhOmjqkGL18e9OCyELyRP2eMQ8Iv67nkx-ATaSkTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24207110</pqid></control><display><type>article</type><title>A projection approach to covariance equivalent realizations of discrete systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wagie, D. ; Skelton, R.</creator><creatorcontrib>Wagie, D. ; Skelton, R.</creatorcontrib><description>Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model. In controller reduction, it produces a reduced controller that is "close" to matching q + 1 output covariances of the full-order controller, and q Markov parameters of the closed-loop system. For discrete systems, a method was devised to produce a reduced-order model that matches the q + 1 covariances [6], but not any Markov parameters. This method requires a factorization to obtain the input matrix, and since the dimension of this matrix factor depends upon rank properties not known a priori, this method may not maintain the original dimension of the input vector. Hence, this method [6] is obviously not suitable for controller reduction. A new projection method is described that matches q covariances and q Markov parameters of the original system while maintaining the correct dimension of the input vector.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1986.1104193</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation methods ; Autocorrelation ; Computer science; control theory; systems ; Continuous time systems ; Control systems ; Control theory. Systems ; Covariance matrix ; Exact sciences and technology ; Flexible structures ; Reduced order systems ; Remuneration ; System theory ; Systems engineering and theory ; Vibration control</subject><ispartof>IEEE transactions on automatic control, 1986-12, Vol.31 (12), p.1114-1120</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a3d7244c9e64cd8351901b8115de02202802a4cc9ee6ab482993f00a2920af493</citedby><cites>FETCH-LOGICAL-c383t-a3d7244c9e64cd8351901b8115de02202802a4cc9ee6ab482993f00a2920af493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1104193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1104193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8223631$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagie, D.</creatorcontrib><creatorcontrib>Skelton, R.</creatorcontrib><title>A projection approach to covariance equivalent realizations of discrete systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model. In controller reduction, it produces a reduced controller that is "close" to matching q + 1 output covariances of the full-order controller, and q Markov parameters of the closed-loop system. For discrete systems, a method was devised to produce a reduced-order model that matches the q + 1 covariances [6], but not any Markov parameters. This method requires a factorization to obtain the input matrix, and since the dimension of this matrix factor depends upon rank properties not known a priori, this method may not maintain the original dimension of the input vector. Hence, this method [6] is obviously not suitable for controller reduction. A new projection method is described that matches q covariances and q Markov parameters of the original system while maintaining the correct dimension of the input vector.</description><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Autocorrelation</subject><subject>Computer science; control theory; systems</subject><subject>Continuous time systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Covariance matrix</subject><subject>Exact sciences and technology</subject><subject>Flexible structures</subject><subject>Reduced order systems</subject><subject>Remuneration</subject><subject>System theory</subject><subject>Systems engineering and theory</subject><subject>Vibration control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFkUtrwzAQhEVpoenjXuhFh9KbU71sS8cQ-oJALulZbOQ1VXDsRHIC6a-vTEJ7zGkZ9tthmSHkgbMx58y8LCbTMTe6GJTiRl6QEc9znYlcyEsyYozrzAhdXJObGFdJFkrxEZlP6CZ0K3S971oKmyTAfdO-o67bQ_DQOqS43fk9NNj2NCA0_gcGOtKuppWPLmCPNB5ij-t4R65qaCLen-Yt-Xp7XUw_stn8_XM6mWVOatlnIKtSKOUMFspVWubcML7UnOcVMiGY0EyAcmmPBSyVFsbImjEQRjColZG35Pnomx7e7jD2dp0-waaBFrtdtMIwpstSnAd1CkgpeR5UgpUp3ASyI-hCF2PA2m6CX0M4WM7s0IVNXdihC3vqIp08nbwhOmjqkGL18e9OCyELyRP2eMQ8Iv67nkx-ATaSkTE</recordid><startdate>19861201</startdate><enddate>19861201</enddate><creator>Wagie, D.</creator><creator>Skelton, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19861201</creationdate><title>A projection approach to covariance equivalent realizations of discrete systems</title><author>Wagie, D. ; Skelton, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a3d7244c9e64cd8351901b8115de02202802a4cc9ee6ab482993f00a2920af493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Autocorrelation</topic><topic>Computer science; control theory; systems</topic><topic>Continuous time systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Covariance matrix</topic><topic>Exact sciences and technology</topic><topic>Flexible structures</topic><topic>Reduced order systems</topic><topic>Remuneration</topic><topic>System theory</topic><topic>Systems engineering and theory</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagie, D.</creatorcontrib><creatorcontrib>Skelton, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wagie, D.</au><au>Skelton, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A projection approach to covariance equivalent realizations of discrete systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1986-12-01</date><risdate>1986</risdate><volume>31</volume><issue>12</issue><spage>1114</spage><epage>1120</epage><pages>1114-1120</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Covariance equivalent realization theory has been used recently in continuous systems for model reduction [1]-[4] and controller reduction [2], [5]. In model reduction, this technique produces a reduced-order model that matches q + 1 output covariances and q Markov parameters of the full-order model. In controller reduction, it produces a reduced controller that is "close" to matching q + 1 output covariances of the full-order controller, and q Markov parameters of the closed-loop system. For discrete systems, a method was devised to produce a reduced-order model that matches the q + 1 covariances [6], but not any Markov parameters. This method requires a factorization to obtain the input matrix, and since the dimension of this matrix factor depends upon rank properties not known a priori, this method may not maintain the original dimension of the input vector. Hence, this method [6] is obviously not suitable for controller reduction. A new projection method is described that matches q covariances and q Markov parameters of the original system while maintaining the correct dimension of the input vector.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1986.1104193</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1986-12, Vol.31 (12), p.1114-1120
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_29008772
source IEEE Electronic Library (IEL)
subjects Applied sciences
Approximation methods
Autocorrelation
Computer science
control theory
systems
Continuous time systems
Control systems
Control theory. Systems
Covariance matrix
Exact sciences and technology
Flexible structures
Reduced order systems
Remuneration
System theory
Systems engineering and theory
Vibration control
title A projection approach to covariance equivalent realizations of discrete systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20projection%20approach%20to%20covariance%20equivalent%20realizations%20of%20discrete%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Wagie,%20D.&rft.date=1986-12-01&rft.volume=31&rft.issue=12&rft.spage=1114&rft.epage=1120&rft.pages=1114-1120&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1986.1104193&rft_dat=%3Cproquest_RIE%3E24207110%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24207110&rft_id=info:pmid/&rft_ieee_id=1104193&rfr_iscdi=true