A parameter identification self-adaptive control system

dbstmcf-In a high-performance aircraft, c h a n g e s i n M a c h number, angle of attack, and altitude can cause a large variation i n t h e short-period transfer function. To provide the pilot with a constant pitch rate control characteristic, an airborne computer with inputs of elevator deflectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1970-08, Vol.15 (4), p.462-468
Hauptverfasser: Parry, I., Houpis, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 4
container_start_page 462
container_title IEEE transactions on automatic control
container_volume 15
creator Parry, I.
Houpis, C.
description dbstmcf-In a high-performance aircraft, c h a n g e s i n M a c h number, angle of attack, and altitude can cause a large variation i n t h e short-period transfer function. To provide the pilot with a constant pitch rate control characteristic, an airborne computer with inputs of elevator deflection angle and pitch rate is used to identify and track changes in the elevator effectiveness. Empirical equations are defined to approximate the aircraft time constant, damping factor, and natural frequency as functions of elevator effectiveness in three difference equations, which are iterated to model the aircraft. Parameters in the difference equations are systematically perturbed until the equation, which uses a value of elevator effectiveness intermediate between the values in the other two equations, also has the smallest mean-square error from the actual aircraft response. The value of elevator effectiveness in this intermediate equation is then presumed to be the same as that of the aircraft and is used to set the loop gain to a pre-determined suitable value. Simulation with an aircraft whose elevator effectiveness varied over a range of 240: 1 showed that the desired loop gain was maintained within a factor of two for both pilot command inputs and for random wind gust disturbances of a root-mean-square magnitude of 20 ftjs.
doi_str_mv 10.1109/TAC.1970.1099491
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29004318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1099491</ieee_id><sourcerecordid>29004318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-966a004029c85ac759a6ceabf2856a2afbb94ef1480ee916454696373d87096c3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt7wc2s3E3Ne5LlUHxBwU1dhzS9gci8TFKh_96U6cKdq8vhnnM4fAjdE7wiBOunbbteEd0UhbXmmlygBRFC1VRQdokWGBNVa6rkNbpJ6atIyTlZoKatJhttDxliFfYw5OCDszmMQ5Wg87Xd2ymHH6jcOOQ4dlU6pgz9Lbrytktwd75L9PnyvF2_1ZuP1_d1u6kdoyzXWkqLMcdUOyWsa4S20oHdeaqEtNT63U5z8IQrDKDLJsGllqxhe9VgLR1bose5d4rj9wFSNn1IDrrODjAekqG61DOi_jcqQRtWupcIz0YXx5QieDPF0Nt4NASbE0pTUJoTSnNGWSIPcyQAwB_7_P0FQDluhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28527396</pqid></control><display><type>article</type><title>A parameter identification self-adaptive control system</title><source>IEEE Electronic Library (IEL)</source><creator>Parry, I. ; Houpis, C.</creator><creatorcontrib>Parry, I. ; Houpis, C.</creatorcontrib><description>dbstmcf-In a high-performance aircraft, c h a n g e s i n M a c h number, angle of attack, and altitude can cause a large variation i n t h e short-period transfer function. To provide the pilot with a constant pitch rate control characteristic, an airborne computer with inputs of elevator deflection angle and pitch rate is used to identify and track changes in the elevator effectiveness. Empirical equations are defined to approximate the aircraft time constant, damping factor, and natural frequency as functions of elevator effectiveness in three difference equations, which are iterated to model the aircraft. Parameters in the difference equations are systematically perturbed until the equation, which uses a value of elevator effectiveness intermediate between the values in the other two equations, also has the smallest mean-square error from the actual aircraft response. The value of elevator effectiveness in this intermediate equation is then presumed to be the same as that of the aircraft and is used to set the loop gain to a pre-determined suitable value. Simulation with an aircraft whose elevator effectiveness varied over a range of 240: 1 showed that the desired loop gain was maintained within a factor of two for both pilot command inputs and for random wind gust disturbances of a root-mean-square magnitude of 20 ftjs.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1970.1099491</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace control ; Aircraft ; Automatic control ; Control systems ; Difference equations ; Elevators ; Parameter estimation ; Stochastic processes ; Stochastic systems ; Variable speed drives</subject><ispartof>IEEE transactions on automatic control, 1970-08, Vol.15 (4), p.462-468</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-966a004029c85ac759a6ceabf2856a2afbb94ef1480ee916454696373d87096c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1099491$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1099491$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parry, I.</creatorcontrib><creatorcontrib>Houpis, C.</creatorcontrib><title>A parameter identification self-adaptive control system</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>dbstmcf-In a high-performance aircraft, c h a n g e s i n M a c h number, angle of attack, and altitude can cause a large variation i n t h e short-period transfer function. To provide the pilot with a constant pitch rate control characteristic, an airborne computer with inputs of elevator deflection angle and pitch rate is used to identify and track changes in the elevator effectiveness. Empirical equations are defined to approximate the aircraft time constant, damping factor, and natural frequency as functions of elevator effectiveness in three difference equations, which are iterated to model the aircraft. Parameters in the difference equations are systematically perturbed until the equation, which uses a value of elevator effectiveness intermediate between the values in the other two equations, also has the smallest mean-square error from the actual aircraft response. The value of elevator effectiveness in this intermediate equation is then presumed to be the same as that of the aircraft and is used to set the loop gain to a pre-determined suitable value. Simulation with an aircraft whose elevator effectiveness varied over a range of 240: 1 showed that the desired loop gain was maintained within a factor of two for both pilot command inputs and for random wind gust disturbances of a root-mean-square magnitude of 20 ftjs.</description><subject>Aerospace control</subject><subject>Aircraft</subject><subject>Automatic control</subject><subject>Control systems</subject><subject>Difference equations</subject><subject>Elevators</subject><subject>Parameter estimation</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Variable speed drives</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt7wc2s3E3Ne5LlUHxBwU1dhzS9gci8TFKh_96U6cKdq8vhnnM4fAjdE7wiBOunbbteEd0UhbXmmlygBRFC1VRQdokWGBNVa6rkNbpJ6atIyTlZoKatJhttDxliFfYw5OCDszmMQ5Wg87Xd2ymHH6jcOOQ4dlU6pgz9Lbrytktwd75L9PnyvF2_1ZuP1_d1u6kdoyzXWkqLMcdUOyWsa4S20oHdeaqEtNT63U5z8IQrDKDLJsGllqxhe9VgLR1bose5d4rj9wFSNn1IDrrODjAekqG61DOi_jcqQRtWupcIz0YXx5QieDPF0Nt4NASbE0pTUJoTSnNGWSIPcyQAwB_7_P0FQDluhw</recordid><startdate>19700801</startdate><enddate>19700801</enddate><creator>Parry, I.</creator><creator>Houpis, C.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19700801</creationdate><title>A parameter identification self-adaptive control system</title><author>Parry, I. ; Houpis, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-966a004029c85ac759a6ceabf2856a2afbb94ef1480ee916454696373d87096c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><topic>Aerospace control</topic><topic>Aircraft</topic><topic>Automatic control</topic><topic>Control systems</topic><topic>Difference equations</topic><topic>Elevators</topic><topic>Parameter estimation</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Variable speed drives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parry, I.</creatorcontrib><creatorcontrib>Houpis, C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parry, I.</au><au>Houpis, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parameter identification self-adaptive control system</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1970-08-01</date><risdate>1970</risdate><volume>15</volume><issue>4</issue><spage>462</spage><epage>468</epage><pages>462-468</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>dbstmcf-In a high-performance aircraft, c h a n g e s i n M a c h number, angle of attack, and altitude can cause a large variation i n t h e short-period transfer function. To provide the pilot with a constant pitch rate control characteristic, an airborne computer with inputs of elevator deflection angle and pitch rate is used to identify and track changes in the elevator effectiveness. Empirical equations are defined to approximate the aircraft time constant, damping factor, and natural frequency as functions of elevator effectiveness in three difference equations, which are iterated to model the aircraft. Parameters in the difference equations are systematically perturbed until the equation, which uses a value of elevator effectiveness intermediate between the values in the other two equations, also has the smallest mean-square error from the actual aircraft response. The value of elevator effectiveness in this intermediate equation is then presumed to be the same as that of the aircraft and is used to set the loop gain to a pre-determined suitable value. Simulation with an aircraft whose elevator effectiveness varied over a range of 240: 1 showed that the desired loop gain was maintained within a factor of two for both pilot command inputs and for random wind gust disturbances of a root-mean-square magnitude of 20 ftjs.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1970.1099491</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1970-08, Vol.15 (4), p.462-468
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_29004318
source IEEE Electronic Library (IEL)
subjects Aerospace control
Aircraft
Automatic control
Control systems
Difference equations
Elevators
Parameter estimation
Stochastic processes
Stochastic systems
Variable speed drives
title A parameter identification self-adaptive control system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parameter%20identification%20self-adaptive%20control%20system&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Parry,%20I.&rft.date=1970-08-01&rft.volume=15&rft.issue=4&rft.spage=462&rft.epage=468&rft.pages=462-468&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1970.1099491&rft_dat=%3Cproquest_RIE%3E29004318%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28527396&rft_id=info:pmid/&rft_ieee_id=1099491&rfr_iscdi=true