Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly
An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2004-11, Vol.42 (11), p.2594-2599 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2599 |
---|---|
container_issue | 11 |
container_start_page | 2594 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 42 |
creator | Yongxiang Hu Wielicki, B.A. Ping Yang Stackhouse, P.W. Lin, B. Young, D.F. |
description | An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband observations of deep convective cloud systems with cloud-top temperature lower than 205 K and with large optical depths. The implementation of this method to the CERES instrument stability analysis reveals that the monthly albedo distributions are practically the same for deep convective clouds with CERES measurements acquired from both the Tropical Rainfall Measuring Mission and Terra satellite platforms, indicating that CERES instruments are well calibrated and stable during both missions. Furthermore, with a nonlinear regression neural network narrowband-broadband conversion, this instrument-stability monitoring method can also be applied to narrowband instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Scanner (VIRS). The results show that the drifts associated with both VIRS and MODIS instruments are less than 1% during a four-year period. Since the CERES albedo measurements are highly accurate, the absorptance of these opaque clouds can be reliably estimated. The absorptions of these clouds from observations are around 25%, whereas the absorptions from theory can be as low as 18%, depending on ice cloud microphysics. |
doi_str_mv | 10.1109/TGRS.2004.834765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29003951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1356072</ieee_id><sourcerecordid>28545809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-3f1f07a492f39130637af3c296539536ea483249e689aea08daf2b498a2d23923</originalsourceid><addsrcrecordid>eNqFkU2L1EAQhoMoOI7eBS-NoLeM_ZVMt7dl0V1hQdD1HCqdittL0h27OgPz__xhJjMLC3vx1Id-3oeqeovireA7Ibj9dHv14-dOcq53Rul9XT0rNqKqTMlrrZ8XGy5sXUpj5cviFdE950JXYr8p_l5M0-AdZB8Diz3rECfmYjigy_6AzA1x7hgMLXaRxZYwHc5sjowg4zD4jGULhB2jPHfHVZLvkGVMCSknDwODPEaa7jDhZzbG4HNMPvw-YZSh9YvjlKMJHLYxBWQjAs0JRwyZGIRlBCIkWmPQUkzTaQgIcYTh-Lp40cNA-Obh3Ra_vn65vbwub75ffbu8uCmd0jKXqhc934O2sldWKF6rPfTKSVtXylaqRtBGSW2xNhYQuOmgl622BmQnlZVqW3w8e6cU_8zLds3oyS03gIBxpkZazheT-D9oKl0Zbhfw_RPwPs4pLEs0xihrTsZtwc-QS5EoYd9MyY-Qjo3gzVp-s5bfrOU35_KXyIcHL5CDoU8QnKfHXC2NsWZVvztzHhEfv1VV871U_wD7f70k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883982900</pqid></control><display><type>article</type><title>Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly</title><source>IEEE Electronic Library (IEL)</source><creator>Yongxiang Hu ; Wielicki, B.A. ; Ping Yang ; Stackhouse, P.W. ; Lin, B. ; Young, D.F.</creator><creatorcontrib>Yongxiang Hu ; Wielicki, B.A. ; Ping Yang ; Stackhouse, P.W. ; Lin, B. ; Young, D.F.</creatorcontrib><description>An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband observations of deep convective cloud systems with cloud-top temperature lower than 205 K and with large optical depths. The implementation of this method to the CERES instrument stability analysis reveals that the monthly albedo distributions are practically the same for deep convective clouds with CERES measurements acquired from both the Tropical Rainfall Measuring Mission and Terra satellite platforms, indicating that CERES instruments are well calibrated and stable during both missions. Furthermore, with a nonlinear regression neural network narrowband-broadband conversion, this instrument-stability monitoring method can also be applied to narrowband instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Scanner (VIRS). The results show that the drifts associated with both VIRS and MODIS instruments are less than 1% during a four-year period. Since the CERES albedo measurements are highly accurate, the absorptance of these opaque clouds can be reliably estimated. The absorptions of these clouds from observations are around 25%, whereas the absorptions from theory can be as low as 18%, depending on ice cloud microphysics.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2004.834765</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Absorption ; Absorption anomaly ; albedo ; Applied geophysics ; Atmospheric measurements ; Clouds ; deep convective cloud ; Earth ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; instrument stability ; Instruments ; Internal geophysics ; MODIS ; Monitoring ; Neural networks ; radiative transfer ; Stability ; Temperature ; Terrestrial atmosphere</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2004-11, Vol.42 (11), p.2594-2599</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-3f1f07a492f39130637af3c296539536ea483249e689aea08daf2b498a2d23923</citedby><cites>FETCH-LOGICAL-c342t-3f1f07a492f39130637af3c296539536ea483249e689aea08daf2b498a2d23923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1356072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1356072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16288980$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yongxiang Hu</creatorcontrib><creatorcontrib>Wielicki, B.A.</creatorcontrib><creatorcontrib>Ping Yang</creatorcontrib><creatorcontrib>Stackhouse, P.W.</creatorcontrib><creatorcontrib>Lin, B.</creatorcontrib><creatorcontrib>Young, D.F.</creatorcontrib><title>Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband observations of deep convective cloud systems with cloud-top temperature lower than 205 K and with large optical depths. The implementation of this method to the CERES instrument stability analysis reveals that the monthly albedo distributions are practically the same for deep convective clouds with CERES measurements acquired from both the Tropical Rainfall Measuring Mission and Terra satellite platforms, indicating that CERES instruments are well calibrated and stable during both missions. Furthermore, with a nonlinear regression neural network narrowband-broadband conversion, this instrument-stability monitoring method can also be applied to narrowband instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Scanner (VIRS). The results show that the drifts associated with both VIRS and MODIS instruments are less than 1% during a four-year period. Since the CERES albedo measurements are highly accurate, the absorptance of these opaque clouds can be reliably estimated. The absorptions of these clouds from observations are around 25%, whereas the absorptions from theory can be as low as 18%, depending on ice cloud microphysics.</description><subject>Absorption</subject><subject>Absorption anomaly</subject><subject>albedo</subject><subject>Applied geophysics</subject><subject>Atmospheric measurements</subject><subject>Clouds</subject><subject>deep convective cloud</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>instrument stability</subject><subject>Instruments</subject><subject>Internal geophysics</subject><subject>MODIS</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>radiative transfer</subject><subject>Stability</subject><subject>Temperature</subject><subject>Terrestrial atmosphere</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU2L1EAQhoMoOI7eBS-NoLeM_ZVMt7dl0V1hQdD1HCqdittL0h27OgPz__xhJjMLC3vx1Id-3oeqeovireA7Ibj9dHv14-dOcq53Rul9XT0rNqKqTMlrrZ8XGy5sXUpj5cviFdE950JXYr8p_l5M0-AdZB8Diz3rECfmYjigy_6AzA1x7hgMLXaRxZYwHc5sjowg4zD4jGULhB2jPHfHVZLvkGVMCSknDwODPEaa7jDhZzbG4HNMPvw-YZSh9YvjlKMJHLYxBWQjAs0JRwyZGIRlBCIkWmPQUkzTaQgIcYTh-Lp40cNA-Obh3Ra_vn65vbwub75ffbu8uCmd0jKXqhc934O2sldWKF6rPfTKSVtXylaqRtBGSW2xNhYQuOmgl622BmQnlZVqW3w8e6cU_8zLds3oyS03gIBxpkZazheT-D9oKl0Zbhfw_RPwPs4pLEs0xihrTsZtwc-QS5EoYd9MyY-Qjo3gzVp-s5bfrOU35_KXyIcHL5CDoU8QnKfHXC2NsWZVvztzHhEfv1VV871U_wD7f70k</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Yongxiang Hu</creator><creator>Wielicki, B.A.</creator><creator>Ping Yang</creator><creator>Stackhouse, P.W.</creator><creator>Lin, B.</creator><creator>Young, D.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>200411</creationdate><title>Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly</title><author>Yongxiang Hu ; Wielicki, B.A. ; Ping Yang ; Stackhouse, P.W. ; Lin, B. ; Young, D.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-3f1f07a492f39130637af3c296539536ea483249e689aea08daf2b498a2d23923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Absorption</topic><topic>Absorption anomaly</topic><topic>albedo</topic><topic>Applied geophysics</topic><topic>Atmospheric measurements</topic><topic>Clouds</topic><topic>deep convective cloud</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>instrument stability</topic><topic>Instruments</topic><topic>Internal geophysics</topic><topic>MODIS</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>radiative transfer</topic><topic>Stability</topic><topic>Temperature</topic><topic>Terrestrial atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yongxiang Hu</creatorcontrib><creatorcontrib>Wielicki, B.A.</creatorcontrib><creatorcontrib>Ping Yang</creatorcontrib><creatorcontrib>Stackhouse, P.W.</creatorcontrib><creatorcontrib>Lin, B.</creatorcontrib><creatorcontrib>Young, D.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongxiang Hu</au><au>Wielicki, B.A.</au><au>Ping Yang</au><au>Stackhouse, P.W.</au><au>Lin, B.</au><au>Young, D.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2004-11</date><risdate>2004</risdate><volume>42</volume><issue>11</issue><spage>2594</spage><epage>2599</epage><pages>2594-2599</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband observations of deep convective cloud systems with cloud-top temperature lower than 205 K and with large optical depths. The implementation of this method to the CERES instrument stability analysis reveals that the monthly albedo distributions are practically the same for deep convective clouds with CERES measurements acquired from both the Tropical Rainfall Measuring Mission and Terra satellite platforms, indicating that CERES instruments are well calibrated and stable during both missions. Furthermore, with a nonlinear regression neural network narrowband-broadband conversion, this instrument-stability monitoring method can also be applied to narrowband instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Scanner (VIRS). The results show that the drifts associated with both VIRS and MODIS instruments are less than 1% during a four-year period. Since the CERES albedo measurements are highly accurate, the absorptance of these opaque clouds can be reliably estimated. The absorptions of these clouds from observations are around 25%, whereas the absorptions from theory can be as low as 18%, depending on ice cloud microphysics.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2004.834765</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2004-11, Vol.42 (11), p.2594-2599 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_29003951 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Absorption anomaly albedo Applied geophysics Atmospheric measurements Clouds deep convective cloud Earth Earth sciences Earth, ocean, space Exact sciences and technology instrument stability Instruments Internal geophysics MODIS Monitoring Neural networks radiative transfer Stability Temperature Terrestrial atmosphere |
title | Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20deep%20convective%20cloud%20albedo%20observation%20to%20satellite-based%20study%20of%20the%20terrestrial%20atmosphere:%20monitoring%20the%20stability%20of%20spaceborne%20measurements%20and%20assessing%20absorption%20anomaly&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yongxiang%20Hu&rft.date=2004-11&rft.volume=42&rft.issue=11&rft.spage=2594&rft.epage=2599&rft.pages=2594-2599&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2004.834765&rft_dat=%3Cproquest_RIE%3E28545809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883982900&rft_id=info:pmid/&rft_ieee_id=1356072&rfr_iscdi=true |