Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly

An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2004-11, Vol.42 (11), p.2594-2599
Hauptverfasser: Yongxiang Hu, Wielicki, B.A., Ping Yang, Stackhouse, P.W., Lin, B., Young, D.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2599
container_issue 11
container_start_page 2594
container_title IEEE transactions on geoscience and remote sensing
container_volume 42
creator Yongxiang Hu
Wielicki, B.A.
Ping Yang
Stackhouse, P.W.
Lin, B.
Young, D.F.
description An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband observations of deep convective cloud systems with cloud-top temperature lower than 205 K and with large optical depths. The implementation of this method to the CERES instrument stability analysis reveals that the monthly albedo distributions are practically the same for deep convective clouds with CERES measurements acquired from both the Tropical Rainfall Measuring Mission and Terra satellite platforms, indicating that CERES instruments are well calibrated and stable during both missions. Furthermore, with a nonlinear regression neural network narrowband-broadband conversion, this instrument-stability monitoring method can also be applied to narrowband instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Scanner (VIRS). The results show that the drifts associated with both VIRS and MODIS instruments are less than 1% during a four-year period. Since the CERES albedo measurements are highly accurate, the absorptance of these opaque clouds can be reliably estimated. The absorptions of these clouds from observations are around 25%, whereas the absorptions from theory can be as low as 18%, depending on ice cloud microphysics.
doi_str_mv 10.1109/TGRS.2004.834765
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29003951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1356072</ieee_id><sourcerecordid>28545809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-3f1f07a492f39130637af3c296539536ea483249e689aea08daf2b498a2d23923</originalsourceid><addsrcrecordid>eNqFkU2L1EAQhoMoOI7eBS-NoLeM_ZVMt7dl0V1hQdD1HCqdittL0h27OgPz__xhJjMLC3vx1Id-3oeqeovireA7Ibj9dHv14-dOcq53Rul9XT0rNqKqTMlrrZ8XGy5sXUpj5cviFdE950JXYr8p_l5M0-AdZB8Diz3rECfmYjigy_6AzA1x7hgMLXaRxZYwHc5sjowg4zD4jGULhB2jPHfHVZLvkGVMCSknDwODPEaa7jDhZzbG4HNMPvw-YZSh9YvjlKMJHLYxBWQjAs0JRwyZGIRlBCIkWmPQUkzTaQgIcYTh-Lp40cNA-Obh3Ra_vn65vbwub75ffbu8uCmd0jKXqhc934O2sldWKF6rPfTKSVtXylaqRtBGSW2xNhYQuOmgl622BmQnlZVqW3w8e6cU_8zLds3oyS03gIBxpkZazheT-D9oKl0Zbhfw_RPwPs4pLEs0xihrTsZtwc-QS5EoYd9MyY-Qjo3gzVp-s5bfrOU35_KXyIcHL5CDoU8QnKfHXC2NsWZVvztzHhEfv1VV871U_wD7f70k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883982900</pqid></control><display><type>article</type><title>Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly</title><source>IEEE Electronic Library (IEL)</source><creator>Yongxiang Hu ; Wielicki, B.A. ; Ping Yang ; Stackhouse, P.W. ; Lin, B. ; Young, D.F.</creator><creatorcontrib>Yongxiang Hu ; Wielicki, B.A. ; Ping Yang ; Stackhouse, P.W. ; Lin, B. ; Young, D.F.</creatorcontrib><description>An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband observations of deep convective cloud systems with cloud-top temperature lower than 205 K and with large optical depths. The implementation of this method to the CERES instrument stability analysis reveals that the monthly albedo distributions are practically the same for deep convective clouds with CERES measurements acquired from both the Tropical Rainfall Measuring Mission and Terra satellite platforms, indicating that CERES instruments are well calibrated and stable during both missions. Furthermore, with a nonlinear regression neural network narrowband-broadband conversion, this instrument-stability monitoring method can also be applied to narrowband instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Scanner (VIRS). The results show that the drifts associated with both VIRS and MODIS instruments are less than 1% during a four-year period. Since the CERES albedo measurements are highly accurate, the absorptance of these opaque clouds can be reliably estimated. The absorptions of these clouds from observations are around 25%, whereas the absorptions from theory can be as low as 18%, depending on ice cloud microphysics.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2004.834765</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Absorption ; Absorption anomaly ; albedo ; Applied geophysics ; Atmospheric measurements ; Clouds ; deep convective cloud ; Earth ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; instrument stability ; Instruments ; Internal geophysics ; MODIS ; Monitoring ; Neural networks ; radiative transfer ; Stability ; Temperature ; Terrestrial atmosphere</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2004-11, Vol.42 (11), p.2594-2599</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-3f1f07a492f39130637af3c296539536ea483249e689aea08daf2b498a2d23923</citedby><cites>FETCH-LOGICAL-c342t-3f1f07a492f39130637af3c296539536ea483249e689aea08daf2b498a2d23923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1356072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1356072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16288980$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yongxiang Hu</creatorcontrib><creatorcontrib>Wielicki, B.A.</creatorcontrib><creatorcontrib>Ping Yang</creatorcontrib><creatorcontrib>Stackhouse, P.W.</creatorcontrib><creatorcontrib>Lin, B.</creatorcontrib><creatorcontrib>Young, D.F.</creatorcontrib><title>Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband observations of deep convective cloud systems with cloud-top temperature lower than 205 K and with large optical depths. The implementation of this method to the CERES instrument stability analysis reveals that the monthly albedo distributions are practically the same for deep convective clouds with CERES measurements acquired from both the Tropical Rainfall Measuring Mission and Terra satellite platforms, indicating that CERES instruments are well calibrated and stable during both missions. Furthermore, with a nonlinear regression neural network narrowband-broadband conversion, this instrument-stability monitoring method can also be applied to narrowband instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Scanner (VIRS). The results show that the drifts associated with both VIRS and MODIS instruments are less than 1% during a four-year period. Since the CERES albedo measurements are highly accurate, the absorptance of these opaque clouds can be reliably estimated. The absorptions of these clouds from observations are around 25%, whereas the absorptions from theory can be as low as 18%, depending on ice cloud microphysics.</description><subject>Absorption</subject><subject>Absorption anomaly</subject><subject>albedo</subject><subject>Applied geophysics</subject><subject>Atmospheric measurements</subject><subject>Clouds</subject><subject>deep convective cloud</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>instrument stability</subject><subject>Instruments</subject><subject>Internal geophysics</subject><subject>MODIS</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>radiative transfer</subject><subject>Stability</subject><subject>Temperature</subject><subject>Terrestrial atmosphere</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU2L1EAQhoMoOI7eBS-NoLeM_ZVMt7dl0V1hQdD1HCqdittL0h27OgPz__xhJjMLC3vx1Id-3oeqeovireA7Ibj9dHv14-dOcq53Rul9XT0rNqKqTMlrrZ8XGy5sXUpj5cviFdE950JXYr8p_l5M0-AdZB8Diz3rECfmYjigy_6AzA1x7hgMLXaRxZYwHc5sjowg4zD4jGULhB2jPHfHVZLvkGVMCSknDwODPEaa7jDhZzbG4HNMPvw-YZSh9YvjlKMJHLYxBWQjAs0JRwyZGIRlBCIkWmPQUkzTaQgIcYTh-Lp40cNA-Obh3Ra_vn65vbwub75ffbu8uCmd0jKXqhc934O2sldWKF6rPfTKSVtXylaqRtBGSW2xNhYQuOmgl622BmQnlZVqW3w8e6cU_8zLds3oyS03gIBxpkZazheT-D9oKl0Zbhfw_RPwPs4pLEs0xihrTsZtwc-QS5EoYd9MyY-Qjo3gzVp-s5bfrOU35_KXyIcHL5CDoU8QnKfHXC2NsWZVvztzHhEfv1VV871U_wD7f70k</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Yongxiang Hu</creator><creator>Wielicki, B.A.</creator><creator>Ping Yang</creator><creator>Stackhouse, P.W.</creator><creator>Lin, B.</creator><creator>Young, D.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>200411</creationdate><title>Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly</title><author>Yongxiang Hu ; Wielicki, B.A. ; Ping Yang ; Stackhouse, P.W. ; Lin, B. ; Young, D.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-3f1f07a492f39130637af3c296539536ea483249e689aea08daf2b498a2d23923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Absorption</topic><topic>Absorption anomaly</topic><topic>albedo</topic><topic>Applied geophysics</topic><topic>Atmospheric measurements</topic><topic>Clouds</topic><topic>deep convective cloud</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>instrument stability</topic><topic>Instruments</topic><topic>Internal geophysics</topic><topic>MODIS</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>radiative transfer</topic><topic>Stability</topic><topic>Temperature</topic><topic>Terrestrial atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yongxiang Hu</creatorcontrib><creatorcontrib>Wielicki, B.A.</creatorcontrib><creatorcontrib>Ping Yang</creatorcontrib><creatorcontrib>Stackhouse, P.W.</creatorcontrib><creatorcontrib>Lin, B.</creatorcontrib><creatorcontrib>Young, D.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongxiang Hu</au><au>Wielicki, B.A.</au><au>Ping Yang</au><au>Stackhouse, P.W.</au><au>Lin, B.</au><au>Young, D.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2004-11</date><risdate>2004</risdate><volume>42</volume><issue>11</issue><spage>2594</spage><epage>2599</epage><pages>2594-2599</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>An objective method is developed to monitor the stability of spaceborne instruments, aimed at distinguishing climate trend from instrument drift in satellite-based climate observation records. This method is based on four-years of Clouds and the Earth's Radiant Energy System (CERES) broadband observations of deep convective cloud systems with cloud-top temperature lower than 205 K and with large optical depths. The implementation of this method to the CERES instrument stability analysis reveals that the monthly albedo distributions are practically the same for deep convective clouds with CERES measurements acquired from both the Tropical Rainfall Measuring Mission and Terra satellite platforms, indicating that CERES instruments are well calibrated and stable during both missions. Furthermore, with a nonlinear regression neural network narrowband-broadband conversion, this instrument-stability monitoring method can also be applied to narrowband instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Scanner (VIRS). The results show that the drifts associated with both VIRS and MODIS instruments are less than 1% during a four-year period. Since the CERES albedo measurements are highly accurate, the absorptance of these opaque clouds can be reliably estimated. The absorptions of these clouds from observations are around 25%, whereas the absorptions from theory can be as low as 18%, depending on ice cloud microphysics.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2004.834765</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2004-11, Vol.42 (11), p.2594-2599
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_29003951
source IEEE Electronic Library (IEL)
subjects Absorption
Absorption anomaly
albedo
Applied geophysics
Atmospheric measurements
Clouds
deep convective cloud
Earth
Earth sciences
Earth, ocean, space
Exact sciences and technology
instrument stability
Instruments
Internal geophysics
MODIS
Monitoring
Neural networks
radiative transfer
Stability
Temperature
Terrestrial atmosphere
title Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20deep%20convective%20cloud%20albedo%20observation%20to%20satellite-based%20study%20of%20the%20terrestrial%20atmosphere:%20monitoring%20the%20stability%20of%20spaceborne%20measurements%20and%20assessing%20absorption%20anomaly&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yongxiang%20Hu&rft.date=2004-11&rft.volume=42&rft.issue=11&rft.spage=2594&rft.epage=2599&rft.pages=2594-2599&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2004.834765&rft_dat=%3Cproquest_RIE%3E28545809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883982900&rft_id=info:pmid/&rft_ieee_id=1356072&rfr_iscdi=true