Performance and geometric interpretation for decision fusion with memory
A binary distributed detection system comprises a bank of local decision makers (LDMs) and a central information processor or data fusion center (DFC). All LDMs survey a common volume for a binary {H/sub 0/, H/sub 1/} phenomenon. Each LDM forms a binary decision: it either accepts H/sub 1/ (target-p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 1999-01, Vol.29 (1), p.52-62 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | 1 |
container_start_page | 52 |
container_title | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans |
container_volume | 29 |
creator | Kam, M. Rorres, C. Wei Chang Xiaoxun Zhu |
description | A binary distributed detection system comprises a bank of local decision makers (LDMs) and a central information processor or data fusion center (DFC). All LDMs survey a common volume for a binary {H/sub 0/, H/sub 1/} phenomenon. Each LDM forms a binary decision: it either accepts H/sub 1/ (target-present) or H/sub 0/ (target-absent). The LDM is fully characterized by its performance probabilities. The decisions are transmitted to the DFC through noiseless communication channels. The DFC then optimally combines the local decisions to obtain a global decision which minimizes a Bayesian objective function. The DFC remembers and uses its most recent decision in synthesizing each new decision. When operating in a stationary environment, our architecture converges to a steady-state decision LDM in finite time with probability one, and its detection performance during convergence and in steady state is strictly determined. Once convergence is proven, we apply the results to the detection of signals with random phase and amplitude. We further provide a geometric interpretation for the behaviour of the system. |
doi_str_mv | 10.1109/3468.736360 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28996640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>736360</ieee_id><sourcerecordid>28996640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d1a07bce2f4c5ba20347d6b9a834983bbfd2b9e9d8bf4583650920a06862f0a73</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFKzVkzdPOelBUmc_sh9HKWqFgh70HDabia40Sd1NkP5706Z4VE8zwzwMAy8h5xRmlIK54ULqmeKSSzggE5plOmWCycOhB81TIZg6JicxfgBQIYyYkMUzhqoNtW0cJrYpkzdsa-yCd4lvOgzrgJ3tfNskg0pKdD7uhn5Xvnz3ntRYt2FzSo4qu4p4tq9T8np_9zJfpMunh8f57TJ1XGVdWlILqnDIKuGywjLgQpWyMFZzYTQviqpkhUFT6qISmeYyA8PAgtSSVWAVn5Kr8e46tJ89xi6vfXS4WtkG2z7mhhpDmRFmkJe_SqaNkVLAP-DwmmLZ31CBEYJu4fUIXWhjDFjl6-BrGzY5hXybVL5NKh-TGvTFqD0i_sj98hvqf43O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27094415</pqid></control><display><type>article</type><title>Performance and geometric interpretation for decision fusion with memory</title><source>IEEE Electronic Library (IEL)</source><creator>Kam, M. ; Rorres, C. ; Wei Chang ; Xiaoxun Zhu</creator><creatorcontrib>Kam, M. ; Rorres, C. ; Wei Chang ; Xiaoxun Zhu</creatorcontrib><description>A binary distributed detection system comprises a bank of local decision makers (LDMs) and a central information processor or data fusion center (DFC). All LDMs survey a common volume for a binary {H/sub 0/, H/sub 1/} phenomenon. Each LDM forms a binary decision: it either accepts H/sub 1/ (target-present) or H/sub 0/ (target-absent). The LDM is fully characterized by its performance probabilities. The decisions are transmitted to the DFC through noiseless communication channels. The DFC then optimally combines the local decisions to obtain a global decision which minimizes a Bayesian objective function. The DFC remembers and uses its most recent decision in synthesizing each new decision. When operating in a stationary environment, our architecture converges to a steady-state decision LDM in finite time with probability one, and its detection performance during convergence and in steady state is strictly determined. Once convergence is proven, we apply the results to the detection of signals with random phase and amplitude. We further provide a geometric interpretation for the behaviour of the system.</description><identifier>ISSN: 1083-4427</identifier><identifier>EISSN: 1558-2426</identifier><identifier>DOI: 10.1109/3468.736360</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Channels ; Communication channels ; Convergence ; Cybernetics ; Digital-to-frequency converters ; Human ; Mathematical analysis ; Microprocessors ; Optimization ; Performance analysis ; Phase detection ; Signal detection ; Signal synthesis ; Steady state ; Testing</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 1999-01, Vol.29 (1), p.52-62</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d1a07bce2f4c5ba20347d6b9a834983bbfd2b9e9d8bf4583650920a06862f0a73</citedby><cites>FETCH-LOGICAL-c375t-d1a07bce2f4c5ba20347d6b9a834983bbfd2b9e9d8bf4583650920a06862f0a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/736360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/736360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kam, M.</creatorcontrib><creatorcontrib>Rorres, C.</creatorcontrib><creatorcontrib>Wei Chang</creatorcontrib><creatorcontrib>Xiaoxun Zhu</creatorcontrib><title>Performance and geometric interpretation for decision fusion with memory</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>A binary distributed detection system comprises a bank of local decision makers (LDMs) and a central information processor or data fusion center (DFC). All LDMs survey a common volume for a binary {H/sub 0/, H/sub 1/} phenomenon. Each LDM forms a binary decision: it either accepts H/sub 1/ (target-present) or H/sub 0/ (target-absent). The LDM is fully characterized by its performance probabilities. The decisions are transmitted to the DFC through noiseless communication channels. The DFC then optimally combines the local decisions to obtain a global decision which minimizes a Bayesian objective function. The DFC remembers and uses its most recent decision in synthesizing each new decision. When operating in a stationary environment, our architecture converges to a steady-state decision LDM in finite time with probability one, and its detection performance during convergence and in steady state is strictly determined. Once convergence is proven, we apply the results to the detection of signals with random phase and amplitude. We further provide a geometric interpretation for the behaviour of the system.</description><subject>Bayesian methods</subject><subject>Channels</subject><subject>Communication channels</subject><subject>Convergence</subject><subject>Cybernetics</subject><subject>Digital-to-frequency converters</subject><subject>Human</subject><subject>Mathematical analysis</subject><subject>Microprocessors</subject><subject>Optimization</subject><subject>Performance analysis</subject><subject>Phase detection</subject><subject>Signal detection</subject><subject>Signal synthesis</subject><subject>Steady state</subject><subject>Testing</subject><issn>1083-4427</issn><issn>1558-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1Lw0AQBuBFFKzVkzdPOelBUmc_sh9HKWqFgh70HDabia40Sd1NkP5706Z4VE8zwzwMAy8h5xRmlIK54ULqmeKSSzggE5plOmWCycOhB81TIZg6JicxfgBQIYyYkMUzhqoNtW0cJrYpkzdsa-yCd4lvOgzrgJ3tfNskg0pKdD7uhn5Xvnz3ntRYt2FzSo4qu4p4tq9T8np_9zJfpMunh8f57TJ1XGVdWlILqnDIKuGywjLgQpWyMFZzYTQviqpkhUFT6qISmeYyA8PAgtSSVWAVn5Kr8e46tJ89xi6vfXS4WtkG2z7mhhpDmRFmkJe_SqaNkVLAP-DwmmLZ31CBEYJu4fUIXWhjDFjl6-BrGzY5hXybVL5NKh-TGvTFqD0i_sj98hvqf43O</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Kam, M.</creator><creator>Rorres, C.</creator><creator>Wei Chang</creator><creator>Xiaoxun Zhu</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>199901</creationdate><title>Performance and geometric interpretation for decision fusion with memory</title><author>Kam, M. ; Rorres, C. ; Wei Chang ; Xiaoxun Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d1a07bce2f4c5ba20347d6b9a834983bbfd2b9e9d8bf4583650920a06862f0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Bayesian methods</topic><topic>Channels</topic><topic>Communication channels</topic><topic>Convergence</topic><topic>Cybernetics</topic><topic>Digital-to-frequency converters</topic><topic>Human</topic><topic>Mathematical analysis</topic><topic>Microprocessors</topic><topic>Optimization</topic><topic>Performance analysis</topic><topic>Phase detection</topic><topic>Signal detection</topic><topic>Signal synthesis</topic><topic>Steady state</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Kam, M.</creatorcontrib><creatorcontrib>Rorres, C.</creatorcontrib><creatorcontrib>Wei Chang</creatorcontrib><creatorcontrib>Xiaoxun Zhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kam, M.</au><au>Rorres, C.</au><au>Wei Chang</au><au>Xiaoxun Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and geometric interpretation for decision fusion with memory</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>1999-01</date><risdate>1999</risdate><volume>29</volume><issue>1</issue><spage>52</spage><epage>62</epage><pages>52-62</pages><issn>1083-4427</issn><eissn>1558-2426</eissn><coden>ITSHFX</coden><abstract>A binary distributed detection system comprises a bank of local decision makers (LDMs) and a central information processor or data fusion center (DFC). All LDMs survey a common volume for a binary {H/sub 0/, H/sub 1/} phenomenon. Each LDM forms a binary decision: it either accepts H/sub 1/ (target-present) or H/sub 0/ (target-absent). The LDM is fully characterized by its performance probabilities. The decisions are transmitted to the DFC through noiseless communication channels. The DFC then optimally combines the local decisions to obtain a global decision which minimizes a Bayesian objective function. The DFC remembers and uses its most recent decision in synthesizing each new decision. When operating in a stationary environment, our architecture converges to a steady-state decision LDM in finite time with probability one, and its detection performance during convergence and in steady state is strictly determined. Once convergence is proven, we apply the results to the detection of signals with random phase and amplitude. We further provide a geometric interpretation for the behaviour of the system.</abstract><pub>IEEE</pub><doi>10.1109/3468.736360</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4427 |
ispartof | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 1999-01, Vol.29 (1), p.52-62 |
issn | 1083-4427 1558-2426 |
language | eng |
recordid | cdi_proquest_miscellaneous_28996640 |
source | IEEE Electronic Library (IEL) |
subjects | Bayesian methods Channels Communication channels Convergence Cybernetics Digital-to-frequency converters Human Mathematical analysis Microprocessors Optimization Performance analysis Phase detection Signal detection Signal synthesis Steady state Testing |
title | Performance and geometric interpretation for decision fusion with memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20geometric%20interpretation%20for%20decision%20fusion%20with%20memory&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Kam,%20M.&rft.date=1999-01&rft.volume=29&rft.issue=1&rft.spage=52&rft.epage=62&rft.pages=52-62&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/3468.736360&rft_dat=%3Cproquest_RIE%3E28996640%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27094415&rft_id=info:pmid/&rft_ieee_id=736360&rfr_iscdi=true |