CVANet: Cascaded visual attention network for single image super-resolution

Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-02, Vol.170, p.622-634
Hauptverfasser: Zhang, Weidong, Zhao, Wenyi, Li, Jia, Zhuang, Peixian, Sun, Haihan, Xu, Yibo, Li, Chongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue
container_start_page 622
container_title Neural networks
container_volume 170
creator Zhang, Weidong
Zhao, Wenyi
Li, Jia
Zhuang, Peixian
Sun, Haihan
Xu, Yibo
Li, Chongyi
description Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet.
doi_str_mv 10.1016/j.neunet.2023.11.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899375747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360802300672X</els_id><sourcerecordid>2899375747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ecb574acd153ae71dab7be399f2d3ec3c575a9a3d8ebf19a9ee2c9e1c6d93ff73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbBj7zMAqmKeIkKNsDWcuxJ5ZLGxXaK-HsStbBkNZtz584chM4JTggm-dUq6aDvICQUU5YQkuCUH6ApKQse06Kkh2iKS87iHJd4gk68X2GM8zJlx2jCSpzlKeZT9FS9z58hXEeV9Epq0NHW-F62kQwBumBsFw0dX9Z9RI11kTfdsoXIrOUSIt9vwMUOvG37kTxFR41sPZzt5wy93d2-Vg_x4uX-sZovYsVyGmJQdVakUmmSMQkF0bIuamCcN1QzUExlRSa5ZLqEuiFccgCqOBCVa86apmAzdLnbu3H2swcfxNp4BW0rO7C9F7TknBVDx4imO1Q5672DRmzccLz7FgSLUaNYiZ1GMWoUhIhB4xC72Df09Rr0X-jX2wDc7AAY_twacMIrA50CbRyoILQ1_zf8AAQnh4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899375747</pqid></control><display><type>article</type><title>CVANet: Cascaded visual attention network for single image super-resolution</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Weidong ; Zhao, Wenyi ; Li, Jia ; Zhuang, Peixian ; Sun, Haihan ; Xu, Yibo ; Li, Chongyi</creator><creatorcontrib>Zhang, Weidong ; Zhao, Wenyi ; Li, Jia ; Zhuang, Peixian ; Sun, Haihan ; Xu, Yibo ; Li, Chongyi</creatorcontrib><description>Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2023.11.049</identifier><identifier>PMID: 38056409</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Benchmarking ; Channel attention ; Closely-related modules ; Feature attention ; Humans ; Image Processing, Computer-Assisted ; Learning ; Neural Networks, Computer ; Pixel attention ; Super-resolution ; Visual Perception</subject><ispartof>Neural networks, 2024-02, Vol.170, p.622-634</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ecb574acd153ae71dab7be399f2d3ec3c575a9a3d8ebf19a9ee2c9e1c6d93ff73</citedby><cites>FETCH-LOGICAL-c362t-ecb574acd153ae71dab7be399f2d3ec3c575a9a3d8ebf19a9ee2c9e1c6d93ff73</cites><orcidid>0000-0003-2495-4469 ; 0000-0003-2749-9916 ; 0000-0002-2376-9504 ; 0000-0002-8339-5081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2023.11.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38056409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Zhao, Wenyi</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Sun, Haihan</creatorcontrib><creatorcontrib>Xu, Yibo</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><title>CVANet: Cascaded visual attention network for single image super-resolution</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet.</description><subject>Benchmarking</subject><subject>Channel attention</subject><subject>Closely-related modules</subject><subject>Feature attention</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Learning</subject><subject>Neural Networks, Computer</subject><subject>Pixel attention</subject><subject>Super-resolution</subject><subject>Visual Perception</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbBj7zMAqmKeIkKNsDWcuxJ5ZLGxXaK-HsStbBkNZtz584chM4JTggm-dUq6aDvICQUU5YQkuCUH6ApKQse06Kkh2iKS87iHJd4gk68X2GM8zJlx2jCSpzlKeZT9FS9z58hXEeV9Epq0NHW-F62kQwBumBsFw0dX9Z9RI11kTfdsoXIrOUSIt9vwMUOvG37kTxFR41sPZzt5wy93d2-Vg_x4uX-sZovYsVyGmJQdVakUmmSMQkF0bIuamCcN1QzUExlRSa5ZLqEuiFccgCqOBCVa86apmAzdLnbu3H2swcfxNp4BW0rO7C9F7TknBVDx4imO1Q5672DRmzccLz7FgSLUaNYiZ1GMWoUhIhB4xC72Df09Rr0X-jX2wDc7AAY_twacMIrA50CbRyoILQ1_zf8AAQnh4Q</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Zhang, Weidong</creator><creator>Zhao, Wenyi</creator><creator>Li, Jia</creator><creator>Zhuang, Peixian</creator><creator>Sun, Haihan</creator><creator>Xu, Yibo</creator><creator>Li, Chongyi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2495-4469</orcidid><orcidid>https://orcid.org/0000-0003-2749-9916</orcidid><orcidid>https://orcid.org/0000-0002-2376-9504</orcidid><orcidid>https://orcid.org/0000-0002-8339-5081</orcidid></search><sort><creationdate>202402</creationdate><title>CVANet: Cascaded visual attention network for single image super-resolution</title><author>Zhang, Weidong ; Zhao, Wenyi ; Li, Jia ; Zhuang, Peixian ; Sun, Haihan ; Xu, Yibo ; Li, Chongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ecb574acd153ae71dab7be399f2d3ec3c575a9a3d8ebf19a9ee2c9e1c6d93ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarking</topic><topic>Channel attention</topic><topic>Closely-related modules</topic><topic>Feature attention</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Learning</topic><topic>Neural Networks, Computer</topic><topic>Pixel attention</topic><topic>Super-resolution</topic><topic>Visual Perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Zhao, Wenyi</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Sun, Haihan</creatorcontrib><creatorcontrib>Xu, Yibo</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weidong</au><au>Zhao, Wenyi</au><au>Li, Jia</au><au>Zhuang, Peixian</au><au>Sun, Haihan</au><au>Xu, Yibo</au><au>Li, Chongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CVANet: Cascaded visual attention network for single image super-resolution</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2024-02</date><risdate>2024</risdate><volume>170</volume><spage>622</spage><epage>634</epage><pages>622-634</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38056409</pmid><doi>10.1016/j.neunet.2023.11.049</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2495-4469</orcidid><orcidid>https://orcid.org/0000-0003-2749-9916</orcidid><orcidid>https://orcid.org/0000-0002-2376-9504</orcidid><orcidid>https://orcid.org/0000-0002-8339-5081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2024-02, Vol.170, p.622-634
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2899375747
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Benchmarking
Channel attention
Closely-related modules
Feature attention
Humans
Image Processing, Computer-Assisted
Learning
Neural Networks, Computer
Pixel attention
Super-resolution
Visual Perception
title CVANet: Cascaded visual attention network for single image super-resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CVANet:%20Cascaded%20visual%20attention%20network%20for%20single%20image%20super-resolution&rft.jtitle=Neural%20networks&rft.au=Zhang,%20Weidong&rft.date=2024-02&rft.volume=170&rft.spage=622&rft.epage=634&rft.pages=622-634&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2023.11.049&rft_dat=%3Cproquest_cross%3E2899375747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899375747&rft_id=info:pmid/38056409&rft_els_id=S089360802300672X&rfr_iscdi=true