CVANet: Cascaded visual attention network for single image super-resolution
Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and...
Gespeichert in:
Veröffentlicht in: | Neural networks 2024-02, Vol.170, p.622-634 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | |
container_start_page | 622 |
container_title | Neural networks |
container_volume | 170 |
creator | Zhang, Weidong Zhao, Wenyi Li, Jia Zhuang, Peixian Sun, Haihan Xu, Yibo Li, Chongyi |
description | Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet. |
doi_str_mv | 10.1016/j.neunet.2023.11.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899375747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360802300672X</els_id><sourcerecordid>2899375747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ecb574acd153ae71dab7be399f2d3ec3c575a9a3d8ebf19a9ee2c9e1c6d93ff73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbBj7zMAqmKeIkKNsDWcuxJ5ZLGxXaK-HsStbBkNZtz584chM4JTggm-dUq6aDvICQUU5YQkuCUH6ApKQse06Kkh2iKS87iHJd4gk68X2GM8zJlx2jCSpzlKeZT9FS9z58hXEeV9Epq0NHW-F62kQwBumBsFw0dX9Z9RI11kTfdsoXIrOUSIt9vwMUOvG37kTxFR41sPZzt5wy93d2-Vg_x4uX-sZovYsVyGmJQdVakUmmSMQkF0bIuamCcN1QzUExlRSa5ZLqEuiFccgCqOBCVa86apmAzdLnbu3H2swcfxNp4BW0rO7C9F7TknBVDx4imO1Q5672DRmzccLz7FgSLUaNYiZ1GMWoUhIhB4xC72Df09Rr0X-jX2wDc7AAY_twacMIrA50CbRyoILQ1_zf8AAQnh4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899375747</pqid></control><display><type>article</type><title>CVANet: Cascaded visual attention network for single image super-resolution</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Weidong ; Zhao, Wenyi ; Li, Jia ; Zhuang, Peixian ; Sun, Haihan ; Xu, Yibo ; Li, Chongyi</creator><creatorcontrib>Zhang, Weidong ; Zhao, Wenyi ; Li, Jia ; Zhuang, Peixian ; Sun, Haihan ; Xu, Yibo ; Li, Chongyi</creatorcontrib><description>Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2023.11.049</identifier><identifier>PMID: 38056409</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Benchmarking ; Channel attention ; Closely-related modules ; Feature attention ; Humans ; Image Processing, Computer-Assisted ; Learning ; Neural Networks, Computer ; Pixel attention ; Super-resolution ; Visual Perception</subject><ispartof>Neural networks, 2024-02, Vol.170, p.622-634</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ecb574acd153ae71dab7be399f2d3ec3c575a9a3d8ebf19a9ee2c9e1c6d93ff73</citedby><cites>FETCH-LOGICAL-c362t-ecb574acd153ae71dab7be399f2d3ec3c575a9a3d8ebf19a9ee2c9e1c6d93ff73</cites><orcidid>0000-0003-2495-4469 ; 0000-0003-2749-9916 ; 0000-0002-2376-9504 ; 0000-0002-8339-5081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2023.11.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38056409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Zhao, Wenyi</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Sun, Haihan</creatorcontrib><creatorcontrib>Xu, Yibo</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><title>CVANet: Cascaded visual attention network for single image super-resolution</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet.</description><subject>Benchmarking</subject><subject>Channel attention</subject><subject>Closely-related modules</subject><subject>Feature attention</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Learning</subject><subject>Neural Networks, Computer</subject><subject>Pixel attention</subject><subject>Super-resolution</subject><subject>Visual Perception</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbBj7zMAqmKeIkKNsDWcuxJ5ZLGxXaK-HsStbBkNZtz584chM4JTggm-dUq6aDvICQUU5YQkuCUH6ApKQse06Kkh2iKS87iHJd4gk68X2GM8zJlx2jCSpzlKeZT9FS9z58hXEeV9Epq0NHW-F62kQwBumBsFw0dX9Z9RI11kTfdsoXIrOUSIt9vwMUOvG37kTxFR41sPZzt5wy93d2-Vg_x4uX-sZovYsVyGmJQdVakUmmSMQkF0bIuamCcN1QzUExlRSa5ZLqEuiFccgCqOBCVa86apmAzdLnbu3H2swcfxNp4BW0rO7C9F7TknBVDx4imO1Q5672DRmzccLz7FgSLUaNYiZ1GMWoUhIhB4xC72Df09Rr0X-jX2wDc7AAY_twacMIrA50CbRyoILQ1_zf8AAQnh4Q</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Zhang, Weidong</creator><creator>Zhao, Wenyi</creator><creator>Li, Jia</creator><creator>Zhuang, Peixian</creator><creator>Sun, Haihan</creator><creator>Xu, Yibo</creator><creator>Li, Chongyi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2495-4469</orcidid><orcidid>https://orcid.org/0000-0003-2749-9916</orcidid><orcidid>https://orcid.org/0000-0002-2376-9504</orcidid><orcidid>https://orcid.org/0000-0002-8339-5081</orcidid></search><sort><creationdate>202402</creationdate><title>CVANet: Cascaded visual attention network for single image super-resolution</title><author>Zhang, Weidong ; Zhao, Wenyi ; Li, Jia ; Zhuang, Peixian ; Sun, Haihan ; Xu, Yibo ; Li, Chongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ecb574acd153ae71dab7be399f2d3ec3c575a9a3d8ebf19a9ee2c9e1c6d93ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarking</topic><topic>Channel attention</topic><topic>Closely-related modules</topic><topic>Feature attention</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Learning</topic><topic>Neural Networks, Computer</topic><topic>Pixel attention</topic><topic>Super-resolution</topic><topic>Visual Perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Zhao, Wenyi</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Sun, Haihan</creatorcontrib><creatorcontrib>Xu, Yibo</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weidong</au><au>Zhao, Wenyi</au><au>Li, Jia</au><au>Zhuang, Peixian</au><au>Sun, Haihan</au><au>Xu, Yibo</au><au>Li, Chongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CVANet: Cascaded visual attention network for single image super-resolution</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2024-02</date><risdate>2024</risdate><volume>170</volume><spage>622</spage><epage>634</epage><pages>622-634</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38056409</pmid><doi>10.1016/j.neunet.2023.11.049</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2495-4469</orcidid><orcidid>https://orcid.org/0000-0003-2749-9916</orcidid><orcidid>https://orcid.org/0000-0002-2376-9504</orcidid><orcidid>https://orcid.org/0000-0002-8339-5081</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2024-02, Vol.170, p.622-634 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_2899375747 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Benchmarking Channel attention Closely-related modules Feature attention Humans Image Processing, Computer-Assisted Learning Neural Networks, Computer Pixel attention Super-resolution Visual Perception |
title | CVANet: Cascaded visual attention network for single image super-resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CVANet:%20Cascaded%20visual%20attention%20network%20for%20single%20image%20super-resolution&rft.jtitle=Neural%20networks&rft.au=Zhang,%20Weidong&rft.date=2024-02&rft.volume=170&rft.spage=622&rft.epage=634&rft.pages=622-634&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2023.11.049&rft_dat=%3Cproquest_cross%3E2899375747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899375747&rft_id=info:pmid/38056409&rft_els_id=S089360802300672X&rfr_iscdi=true |