Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy

Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2024-04, Vol.45 (7-8), p.687-705
Hauptverfasser: Štěpánová, Sille, Andris, Erik, Gutten, Ondrej, Buděšínský, Miloš, Dejmek, Milan, Břehová, Petra, Rulíšek, Lubomír, Kašička, Václav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue 7-8
container_start_page 687
container_title Electrophoresis
container_volume 45
creator Štěpánová, Sille
Andris, Erik
Gutten, Ondrej
Buděšínský, Miloš
Dejmek, Milan
Břehová, Petra
Rulíšek, Lubomír
Kašička, Václav
description Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pK values, as well as to unambiguously determine the protonation sites. Acidity constants (pK ) of the NH moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pK values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pK of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pK , the pK values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pK s determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.
doi_str_mv 10.1002/elps.202300232
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899372003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046780718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f1d7bbb5e073ca14d8b96100230886a6a4a3bc18b0de3419513bf2fd7debe0163</originalsourceid><addsrcrecordid>eNqFkTtvFTEQhS0EIjeBlhJZoqFgL2PPPrxlFAWCFEBCUK_8mFUcedebtbe4_4Ufi28SUtBQjTz-5ozOHMbeCNgLAPmRwpL2EiSWB8pnbCcaKSvZKnzOdiA6rEBhc8JOU7oFgLqv65fsBBU0fYe4Y7_PrXc-H7iNc8p6zonr2fFljTnOOvs48-QzJR5Hbg82eMudnzcbKGbvSt9RpnXyMzluiopefAh6PXAKZPMal5u4UvLpA7_bivo2cXtDk7c6FDbYLdzvKN_Hrd--_uBpuZ9LNi6HV-zFqEOi14_1jP36dPnz4qq6_v75y8X5dWWxb3M1CtcZYxqCDq0WtVOmb4_XQVCq1a2uNRorlAFHWIu-EWhGObrOkSEQLZ6x9w-6xfbdRikPk0-WipGZ4pYGFA0KVQP0_0Wl6nvsJAAW9N0_6G3c1rkYGRDqtlPQCVWo_QNli-m00jgsq5_KBQcBw9HEcIx4eIq4DLx9lN3MRO4J_5sp_gF8KKVn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046780718</pqid></control><display><type>article</type><title>Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Štěpánová, Sille ; Andris, Erik ; Gutten, Ondrej ; Buděšínský, Miloš ; Dejmek, Milan ; Břehová, Petra ; Rulíšek, Lubomír ; Kašička, Václav</creator><creatorcontrib>Štěpánová, Sille ; Andris, Erik ; Gutten, Ondrej ; Buděšínský, Miloš ; Dejmek, Milan ; Břehová, Petra ; Rulíšek, Lubomír ; Kašička, Václav</creatorcontrib><description>Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pK values, as well as to unambiguously determine the protonation sites. Acidity constants (pK ) of the NH moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pK values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pK of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pK , the pK values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pK s determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202300232</identifier><identifier>PMID: 38059733</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>acidity ; Adenine ; Aqueous electrolytes ; Capillary electrophoresis ; Constants ; Density functional theory ; dissociation ; Electrolytes ; Electromigration ; Electrophoresis ; enols ; Eukaryotes ; eukaryotic cells ; guanine ; ionic strength ; Mathematical analysis ; Morphing ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Protonation ; Quantum chemistry ; quantum mechanics ; Regression analysis ; Spectrum analysis ; temperature ; thermodynamics</subject><ispartof>Electrophoresis, 2024-04, Vol.45 (7-8), p.687-705</ispartof><rights>2023 The Authors. Electrophoresis published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f1d7bbb5e073ca14d8b96100230886a6a4a3bc18b0de3419513bf2fd7debe0163</citedby><cites>FETCH-LOGICAL-c396t-f1d7bbb5e073ca14d8b96100230886a6a4a3bc18b0de3419513bf2fd7debe0163</cites><orcidid>0000-0003-1719-1432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38059733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Štěpánová, Sille</creatorcontrib><creatorcontrib>Andris, Erik</creatorcontrib><creatorcontrib>Gutten, Ondrej</creatorcontrib><creatorcontrib>Buděšínský, Miloš</creatorcontrib><creatorcontrib>Dejmek, Milan</creatorcontrib><creatorcontrib>Břehová, Petra</creatorcontrib><creatorcontrib>Rulíšek, Lubomír</creatorcontrib><creatorcontrib>Kašička, Václav</creatorcontrib><title>Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pK values, as well as to unambiguously determine the protonation sites. Acidity constants (pK ) of the NH moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pK values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pK of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pK , the pK values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pK s determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.</description><subject>acidity</subject><subject>Adenine</subject><subject>Aqueous electrolytes</subject><subject>Capillary electrophoresis</subject><subject>Constants</subject><subject>Density functional theory</subject><subject>dissociation</subject><subject>Electrolytes</subject><subject>Electromigration</subject><subject>Electrophoresis</subject><subject>enols</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>guanine</subject><subject>ionic strength</subject><subject>Mathematical analysis</subject><subject>Morphing</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Protonation</subject><subject>Quantum chemistry</subject><subject>quantum mechanics</subject><subject>Regression analysis</subject><subject>Spectrum analysis</subject><subject>temperature</subject><subject>thermodynamics</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkTtvFTEQhS0EIjeBlhJZoqFgL2PPPrxlFAWCFEBCUK_8mFUcedebtbe4_4Ufi28SUtBQjTz-5ozOHMbeCNgLAPmRwpL2EiSWB8pnbCcaKSvZKnzOdiA6rEBhc8JOU7oFgLqv65fsBBU0fYe4Y7_PrXc-H7iNc8p6zonr2fFljTnOOvs48-QzJR5Hbg82eMudnzcbKGbvSt9RpnXyMzluiopefAh6PXAKZPMal5u4UvLpA7_bivo2cXtDk7c6FDbYLdzvKN_Hrd--_uBpuZ9LNi6HV-zFqEOi14_1jP36dPnz4qq6_v75y8X5dWWxb3M1CtcZYxqCDq0WtVOmb4_XQVCq1a2uNRorlAFHWIu-EWhGObrOkSEQLZ6x9w-6xfbdRikPk0-WipGZ4pYGFA0KVQP0_0Wl6nvsJAAW9N0_6G3c1rkYGRDqtlPQCVWo_QNli-m00jgsq5_KBQcBw9HEcIx4eIq4DLx9lN3MRO4J_5sp_gF8KKVn</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Štěpánová, Sille</creator><creator>Andris, Erik</creator><creator>Gutten, Ondrej</creator><creator>Buděšínský, Miloš</creator><creator>Dejmek, Milan</creator><creator>Břehová, Petra</creator><creator>Rulíšek, Lubomír</creator><creator>Kašička, Václav</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1719-1432</orcidid></search><sort><creationdate>20240401</creationdate><title>Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy</title><author>Štěpánová, Sille ; Andris, Erik ; Gutten, Ondrej ; Buděšínský, Miloš ; Dejmek, Milan ; Břehová, Petra ; Rulíšek, Lubomír ; Kašička, Václav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f1d7bbb5e073ca14d8b96100230886a6a4a3bc18b0de3419513bf2fd7debe0163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acidity</topic><topic>Adenine</topic><topic>Aqueous electrolytes</topic><topic>Capillary electrophoresis</topic><topic>Constants</topic><topic>Density functional theory</topic><topic>dissociation</topic><topic>Electrolytes</topic><topic>Electromigration</topic><topic>Electrophoresis</topic><topic>enols</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>guanine</topic><topic>ionic strength</topic><topic>Mathematical analysis</topic><topic>Morphing</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Protonation</topic><topic>Quantum chemistry</topic><topic>quantum mechanics</topic><topic>Regression analysis</topic><topic>Spectrum analysis</topic><topic>temperature</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Štěpánová, Sille</creatorcontrib><creatorcontrib>Andris, Erik</creatorcontrib><creatorcontrib>Gutten, Ondrej</creatorcontrib><creatorcontrib>Buděšínský, Miloš</creatorcontrib><creatorcontrib>Dejmek, Milan</creatorcontrib><creatorcontrib>Břehová, Petra</creatorcontrib><creatorcontrib>Rulíšek, Lubomír</creatorcontrib><creatorcontrib>Kašička, Václav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Štěpánová, Sille</au><au>Andris, Erik</au><au>Gutten, Ondrej</au><au>Buděšínský, Miloš</au><au>Dejmek, Milan</au><au>Břehová, Petra</au><au>Rulíšek, Lubomír</au><au>Kašička, Václav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>45</volume><issue>7-8</issue><spage>687</spage><epage>705</epage><pages>687-705</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pK values, as well as to unambiguously determine the protonation sites. Acidity constants (pK ) of the NH moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pK values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pK of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pK , the pK values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pK s determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38059733</pmid><doi>10.1002/elps.202300232</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1719-1432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2024-04, Vol.45 (7-8), p.687-705
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_2899372003
source Wiley Online Library Journals Frontfile Complete
subjects acidity
Adenine
Aqueous electrolytes
Capillary electrophoresis
Constants
Density functional theory
dissociation
Electrolytes
Electromigration
Electrophoresis
enols
Eukaryotes
eukaryotic cells
guanine
ionic strength
Mathematical analysis
Morphing
NMR
NMR spectroscopy
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Protonation
Quantum chemistry
quantum mechanics
Regression analysis
Spectrum analysis
temperature
thermodynamics
title Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidity%20constants%20and%20protonation%20sites%20of%20cyclic%20dinucleotides%20determined%20by%20capillary%20electrophoresis,%20quantum%20chemical%20calculations,%20and%20NMR%20spectroscopy&rft.jtitle=Electrophoresis&rft.au=%C5%A0t%C4%9Bp%C3%A1nov%C3%A1,%20Sille&rft.date=2024-04-01&rft.volume=45&rft.issue=7-8&rft.spage=687&rft.epage=705&rft.pages=687-705&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202300232&rft_dat=%3Cproquest_cross%3E3046780718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046780718&rft_id=info:pmid/38059733&rfr_iscdi=true