Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy
Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employin...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2024-04, Vol.45 (7-8), p.687-705 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 705 |
---|---|
container_issue | 7-8 |
container_start_page | 687 |
container_title | Electrophoresis |
container_volume | 45 |
creator | Štěpánová, Sille Andris, Erik Gutten, Ondrej Buděšínský, Miloš Dejmek, Milan Břehová, Petra Rulíšek, Lubomír Kašička, Václav |
description | Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pK
values, as well as to unambiguously determine the protonation sites. Acidity constants (pK
) of the NH
moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pK
values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pK
of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pK
, the pK
values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pK
s determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy. |
doi_str_mv | 10.1002/elps.202300232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899372003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046780718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f1d7bbb5e073ca14d8b96100230886a6a4a3bc18b0de3419513bf2fd7debe0163</originalsourceid><addsrcrecordid>eNqFkTtvFTEQhS0EIjeBlhJZoqFgL2PPPrxlFAWCFEBCUK_8mFUcedebtbe4_4Ufi28SUtBQjTz-5ozOHMbeCNgLAPmRwpL2EiSWB8pnbCcaKSvZKnzOdiA6rEBhc8JOU7oFgLqv65fsBBU0fYe4Y7_PrXc-H7iNc8p6zonr2fFljTnOOvs48-QzJR5Hbg82eMudnzcbKGbvSt9RpnXyMzluiopefAh6PXAKZPMal5u4UvLpA7_bivo2cXtDk7c6FDbYLdzvKN_Hrd--_uBpuZ9LNi6HV-zFqEOi14_1jP36dPnz4qq6_v75y8X5dWWxb3M1CtcZYxqCDq0WtVOmb4_XQVCq1a2uNRorlAFHWIu-EWhGObrOkSEQLZ6x9w-6xfbdRikPk0-WipGZ4pYGFA0KVQP0_0Wl6nvsJAAW9N0_6G3c1rkYGRDqtlPQCVWo_QNli-m00jgsq5_KBQcBw9HEcIx4eIq4DLx9lN3MRO4J_5sp_gF8KKVn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046780718</pqid></control><display><type>article</type><title>Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Štěpánová, Sille ; Andris, Erik ; Gutten, Ondrej ; Buděšínský, Miloš ; Dejmek, Milan ; Břehová, Petra ; Rulíšek, Lubomír ; Kašička, Václav</creator><creatorcontrib>Štěpánová, Sille ; Andris, Erik ; Gutten, Ondrej ; Buděšínský, Miloš ; Dejmek, Milan ; Břehová, Petra ; Rulíšek, Lubomír ; Kašička, Václav</creatorcontrib><description>Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pK
values, as well as to unambiguously determine the protonation sites. Acidity constants (pK
) of the NH
moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pK
values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pK
of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pK
, the pK
values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pK
s determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202300232</identifier><identifier>PMID: 38059733</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>acidity ; Adenine ; Aqueous electrolytes ; Capillary electrophoresis ; Constants ; Density functional theory ; dissociation ; Electrolytes ; Electromigration ; Electrophoresis ; enols ; Eukaryotes ; eukaryotic cells ; guanine ; ionic strength ; Mathematical analysis ; Morphing ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Protonation ; Quantum chemistry ; quantum mechanics ; Regression analysis ; Spectrum analysis ; temperature ; thermodynamics</subject><ispartof>Electrophoresis, 2024-04, Vol.45 (7-8), p.687-705</ispartof><rights>2023 The Authors. Electrophoresis published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f1d7bbb5e073ca14d8b96100230886a6a4a3bc18b0de3419513bf2fd7debe0163</citedby><cites>FETCH-LOGICAL-c396t-f1d7bbb5e073ca14d8b96100230886a6a4a3bc18b0de3419513bf2fd7debe0163</cites><orcidid>0000-0003-1719-1432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38059733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Štěpánová, Sille</creatorcontrib><creatorcontrib>Andris, Erik</creatorcontrib><creatorcontrib>Gutten, Ondrej</creatorcontrib><creatorcontrib>Buděšínský, Miloš</creatorcontrib><creatorcontrib>Dejmek, Milan</creatorcontrib><creatorcontrib>Břehová, Petra</creatorcontrib><creatorcontrib>Rulíšek, Lubomír</creatorcontrib><creatorcontrib>Kašička, Václav</creatorcontrib><title>Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pK
values, as well as to unambiguously determine the protonation sites. Acidity constants (pK
) of the NH
moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pK
values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pK
of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pK
, the pK
values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pK
s determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.</description><subject>acidity</subject><subject>Adenine</subject><subject>Aqueous electrolytes</subject><subject>Capillary electrophoresis</subject><subject>Constants</subject><subject>Density functional theory</subject><subject>dissociation</subject><subject>Electrolytes</subject><subject>Electromigration</subject><subject>Electrophoresis</subject><subject>enols</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>guanine</subject><subject>ionic strength</subject><subject>Mathematical analysis</subject><subject>Morphing</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Protonation</subject><subject>Quantum chemistry</subject><subject>quantum mechanics</subject><subject>Regression analysis</subject><subject>Spectrum analysis</subject><subject>temperature</subject><subject>thermodynamics</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkTtvFTEQhS0EIjeBlhJZoqFgL2PPPrxlFAWCFEBCUK_8mFUcedebtbe4_4Ufi28SUtBQjTz-5ozOHMbeCNgLAPmRwpL2EiSWB8pnbCcaKSvZKnzOdiA6rEBhc8JOU7oFgLqv65fsBBU0fYe4Y7_PrXc-H7iNc8p6zonr2fFljTnOOvs48-QzJR5Hbg82eMudnzcbKGbvSt9RpnXyMzluiopefAh6PXAKZPMal5u4UvLpA7_bivo2cXtDk7c6FDbYLdzvKN_Hrd--_uBpuZ9LNi6HV-zFqEOi14_1jP36dPnz4qq6_v75y8X5dWWxb3M1CtcZYxqCDq0WtVOmb4_XQVCq1a2uNRorlAFHWIu-EWhGObrOkSEQLZ6x9w-6xfbdRikPk0-WipGZ4pYGFA0KVQP0_0Wl6nvsJAAW9N0_6G3c1rkYGRDqtlPQCVWo_QNli-m00jgsq5_KBQcBw9HEcIx4eIq4DLx9lN3MRO4J_5sp_gF8KKVn</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Štěpánová, Sille</creator><creator>Andris, Erik</creator><creator>Gutten, Ondrej</creator><creator>Buděšínský, Miloš</creator><creator>Dejmek, Milan</creator><creator>Břehová, Petra</creator><creator>Rulíšek, Lubomír</creator><creator>Kašička, Václav</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1719-1432</orcidid></search><sort><creationdate>20240401</creationdate><title>Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy</title><author>Štěpánová, Sille ; Andris, Erik ; Gutten, Ondrej ; Buděšínský, Miloš ; Dejmek, Milan ; Břehová, Petra ; Rulíšek, Lubomír ; Kašička, Václav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f1d7bbb5e073ca14d8b96100230886a6a4a3bc18b0de3419513bf2fd7debe0163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acidity</topic><topic>Adenine</topic><topic>Aqueous electrolytes</topic><topic>Capillary electrophoresis</topic><topic>Constants</topic><topic>Density functional theory</topic><topic>dissociation</topic><topic>Electrolytes</topic><topic>Electromigration</topic><topic>Electrophoresis</topic><topic>enols</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>guanine</topic><topic>ionic strength</topic><topic>Mathematical analysis</topic><topic>Morphing</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Protonation</topic><topic>Quantum chemistry</topic><topic>quantum mechanics</topic><topic>Regression analysis</topic><topic>Spectrum analysis</topic><topic>temperature</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Štěpánová, Sille</creatorcontrib><creatorcontrib>Andris, Erik</creatorcontrib><creatorcontrib>Gutten, Ondrej</creatorcontrib><creatorcontrib>Buděšínský, Miloš</creatorcontrib><creatorcontrib>Dejmek, Milan</creatorcontrib><creatorcontrib>Břehová, Petra</creatorcontrib><creatorcontrib>Rulíšek, Lubomír</creatorcontrib><creatorcontrib>Kašička, Václav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Štěpánová, Sille</au><au>Andris, Erik</au><au>Gutten, Ondrej</au><au>Buděšínský, Miloš</au><au>Dejmek, Milan</au><au>Břehová, Petra</au><au>Rulíšek, Lubomír</au><au>Kašička, Václav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>45</volume><issue>7-8</issue><spage>687</spage><epage>705</epage><pages>687-705</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pK
values, as well as to unambiguously determine the protonation sites. Acidity constants (pK
) of the NH
moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pK
values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pK
of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pK
, the pK
values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pK
s determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38059733</pmid><doi>10.1002/elps.202300232</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1719-1432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2024-04, Vol.45 (7-8), p.687-705 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_2899372003 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | acidity Adenine Aqueous electrolytes Capillary electrophoresis Constants Density functional theory dissociation Electrolytes Electromigration Electrophoresis enols Eukaryotes eukaryotic cells guanine ionic strength Mathematical analysis Morphing NMR NMR spectroscopy Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Protonation Quantum chemistry quantum mechanics Regression analysis Spectrum analysis temperature thermodynamics |
title | Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidity%20constants%20and%20protonation%20sites%20of%20cyclic%20dinucleotides%20determined%20by%20capillary%20electrophoresis,%20quantum%20chemical%20calculations,%20and%20NMR%20spectroscopy&rft.jtitle=Electrophoresis&rft.au=%C5%A0t%C4%9Bp%C3%A1nov%C3%A1,%20Sille&rft.date=2024-04-01&rft.volume=45&rft.issue=7-8&rft.spage=687&rft.epage=705&rft.pages=687-705&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202300232&rft_dat=%3Cproquest_cross%3E3046780718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046780718&rft_id=info:pmid/38059733&rfr_iscdi=true |