Cooperative H2 activation at a nickel(0)–olefin centre
Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M–H bonds are generated either by oxidative addition of H 2 to a metal centre or by deprotonation of a non-classical metal dihydrogen (M–H 2 ) intermediate. Here we provide evid...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2024-03, Vol.16 (3), p.417-425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 425 |
---|---|
container_issue | 3 |
container_start_page | 417 |
container_title | Nature chemistry |
container_volume | 16 |
creator | Sansores-Paredes, María L. G. Lutz, Martin Moret, Marc-Etienne |
description | Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M–H bonds are generated either by oxidative addition of H
2
to a metal centre or by deprotonation of a non-classical metal dihydrogen (M–H
2
) intermediate. Here we provide evidence for an alternative H
2
-activation mechanism that instead involves direct ligand-to-ligand hydrogen transfer (LLHT) from a metal-bound H
2
molecule to a metal-coordinated olefin. An unusual pincer ligand that features two phosphine ligands and a central olefin supports the formation of a non-classical Ni–H
2
complex and the Ni(alkyl)(hydrido) product of LLHT, in rapid equilibrium with dissolved H
2
. The usefulness of this cooperative H
2
-activation mechanism for catalysis is demonstrated in the semihydrogenation of diphenylacetylene. Experimental and computational mechanistic investigations support the central role of LLHT for H
2
activation and catalytic semihydrogenation. The product distribution obtained is largely determined by the competition between (
E
)–(Z) isomerization and catalyst degradation by self-hydrogenation.
Activation of H
2
by a metal–olefin complex is characterized experimentally and computationally using a nickel pincer complex, showing that the reaction proceeds via a direct ligand-to-ligand hydrogen transfer mechanism. An application of this cooperative H
2
-activation mechanism is demonstrated in the nickel-catalysed semihydrogenation of diphenylacetylene. |
doi_str_mv | 10.1038/s41557-023-01380-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898957534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898957534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-588362d77f54dd250fded307ee704a7ddcaf25203a6239023ceb2c2c0724bc7d3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrATV2M3vw1maUUtULBja5DmtyRqdNJTaaCO9_BN_RJjI4ouHB1z4XvHA6HkGMKZxS4Pk-CSqlKYLwEyjWUdIeMqJKyFFxUuz-awz45SGkFMJWcTkdEz0LYYLR984zFnBXWZZW_0BW2L2zRNe4R2wmcvr--hRbrpiscdn3EQ7JX2zbh0fcdk_ury7vZvFzcXt_MLhal45L1pdSaT5lXqpbCeyah9ug5KEQFwirvna2ZZMDtlPEq93e4ZI45UEwsnfJ8TCZD7iaGpy2m3qyb5LBtbYdhmwzTla6kklxk9OQPugrb2OV2hlVciUpLoTPFBsrFkFLE2mxis7bxxVAwn2OaYUyTy5ivMQ3NJj6YUoa7B4y_0f-4PgAJZnXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937498548</pqid></control><display><type>article</type><title>Cooperative H2 activation at a nickel(0)–olefin centre</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sansores-Paredes, María L. G. ; Lutz, Martin ; Moret, Marc-Etienne</creator><creatorcontrib>Sansores-Paredes, María L. G. ; Lutz, Martin ; Moret, Marc-Etienne</creatorcontrib><description>Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M–H bonds are generated either by oxidative addition of H
2
to a metal centre or by deprotonation of a non-classical metal dihydrogen (M–H
2
) intermediate. Here we provide evidence for an alternative H
2
-activation mechanism that instead involves direct ligand-to-ligand hydrogen transfer (LLHT) from a metal-bound H
2
molecule to a metal-coordinated olefin. An unusual pincer ligand that features two phosphine ligands and a central olefin supports the formation of a non-classical Ni–H
2
complex and the Ni(alkyl)(hydrido) product of LLHT, in rapid equilibrium with dissolved H
2
. The usefulness of this cooperative H
2
-activation mechanism for catalysis is demonstrated in the semihydrogenation of diphenylacetylene. Experimental and computational mechanistic investigations support the central role of LLHT for H
2
activation and catalytic semihydrogenation. The product distribution obtained is largely determined by the competition between (
E
)–(Z) isomerization and catalyst degradation by self-hydrogenation.
Activation of H
2
by a metal–olefin complex is characterized experimentally and computationally using a nickel pincer complex, showing that the reaction proceeds via a direct ligand-to-ligand hydrogen transfer mechanism. An application of this cooperative H
2
-activation mechanism is demonstrated in the nickel-catalysed semihydrogenation of diphenylacetylene.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-023-01380-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/263/406/939 ; 639/638/563/934 ; 639/638/77/885 ; 639/638/77/888 ; 639/638/911/406/910 ; Analytical Chemistry ; Biochemistry ; Catalysis ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Hydrogenation ; Inorganic Chemistry ; Isomerization ; Ligands ; Metals ; Nickel ; Organic Chemistry ; Phosphine ; Phosphines ; Physical Chemistry</subject><ispartof>Nature chemistry, 2024-03, Vol.16 (3), p.417-425</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-588362d77f54dd250fded307ee704a7ddcaf25203a6239023ceb2c2c0724bc7d3</citedby><cites>FETCH-LOGICAL-c352t-588362d77f54dd250fded307ee704a7ddcaf25203a6239023ceb2c2c0724bc7d3</cites><orcidid>0000-0003-1524-9629 ; 0000-0002-4134-5772 ; 0000-0002-3137-6073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-023-01380-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-023-01380-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sansores-Paredes, María L. G.</creatorcontrib><creatorcontrib>Lutz, Martin</creatorcontrib><creatorcontrib>Moret, Marc-Etienne</creatorcontrib><title>Cooperative H2 activation at a nickel(0)–olefin centre</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><description>Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M–H bonds are generated either by oxidative addition of H
2
to a metal centre or by deprotonation of a non-classical metal dihydrogen (M–H
2
) intermediate. Here we provide evidence for an alternative H
2
-activation mechanism that instead involves direct ligand-to-ligand hydrogen transfer (LLHT) from a metal-bound H
2
molecule to a metal-coordinated olefin. An unusual pincer ligand that features two phosphine ligands and a central olefin supports the formation of a non-classical Ni–H
2
complex and the Ni(alkyl)(hydrido) product of LLHT, in rapid equilibrium with dissolved H
2
. The usefulness of this cooperative H
2
-activation mechanism for catalysis is demonstrated in the semihydrogenation of diphenylacetylene. Experimental and computational mechanistic investigations support the central role of LLHT for H
2
activation and catalytic semihydrogenation. The product distribution obtained is largely determined by the competition between (
E
)–(Z) isomerization and catalyst degradation by self-hydrogenation.
Activation of H
2
by a metal–olefin complex is characterized experimentally and computationally using a nickel pincer complex, showing that the reaction proceeds via a direct ligand-to-ligand hydrogen transfer mechanism. An application of this cooperative H
2
-activation mechanism is demonstrated in the nickel-catalysed semihydrogenation of diphenylacetylene.</description><subject>639/638/263/406/939</subject><subject>639/638/563/934</subject><subject>639/638/77/885</subject><subject>639/638/77/888</subject><subject>639/638/911/406/910</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Hydrogenation</subject><subject>Inorganic Chemistry</subject><subject>Isomerization</subject><subject>Ligands</subject><subject>Metals</subject><subject>Nickel</subject><subject>Organic Chemistry</subject><subject>Phosphine</subject><subject>Phosphines</subject><subject>Physical Chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrATV2M3vw1maUUtULBja5DmtyRqdNJTaaCO9_BN_RJjI4ouHB1z4XvHA6HkGMKZxS4Pk-CSqlKYLwEyjWUdIeMqJKyFFxUuz-awz45SGkFMJWcTkdEz0LYYLR984zFnBXWZZW_0BW2L2zRNe4R2wmcvr--hRbrpiscdn3EQ7JX2zbh0fcdk_ury7vZvFzcXt_MLhal45L1pdSaT5lXqpbCeyah9ug5KEQFwirvna2ZZMDtlPEq93e4ZI45UEwsnfJ8TCZD7iaGpy2m3qyb5LBtbYdhmwzTla6kklxk9OQPugrb2OV2hlVciUpLoTPFBsrFkFLE2mxis7bxxVAwn2OaYUyTy5ivMQ3NJj6YUoa7B4y_0f-4PgAJZnXg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Sansores-Paredes, María L. G.</creator><creator>Lutz, Martin</creator><creator>Moret, Marc-Etienne</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1524-9629</orcidid><orcidid>https://orcid.org/0000-0002-4134-5772</orcidid><orcidid>https://orcid.org/0000-0002-3137-6073</orcidid></search><sort><creationdate>20240301</creationdate><title>Cooperative H2 activation at a nickel(0)–olefin centre</title><author>Sansores-Paredes, María L. G. ; Lutz, Martin ; Moret, Marc-Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-588362d77f54dd250fded307ee704a7ddcaf25203a6239023ceb2c2c0724bc7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/638/263/406/939</topic><topic>639/638/563/934</topic><topic>639/638/77/885</topic><topic>639/638/77/888</topic><topic>639/638/911/406/910</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Hydrogenation</topic><topic>Inorganic Chemistry</topic><topic>Isomerization</topic><topic>Ligands</topic><topic>Metals</topic><topic>Nickel</topic><topic>Organic Chemistry</topic><topic>Phosphine</topic><topic>Phosphines</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sansores-Paredes, María L. G.</creatorcontrib><creatorcontrib>Lutz, Martin</creatorcontrib><creatorcontrib>Moret, Marc-Etienne</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sansores-Paredes, María L. G.</au><au>Lutz, Martin</au><au>Moret, Marc-Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative H2 activation at a nickel(0)–olefin centre</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>417</spage><epage>425</epage><pages>417-425</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M–H bonds are generated either by oxidative addition of H
2
to a metal centre or by deprotonation of a non-classical metal dihydrogen (M–H
2
) intermediate. Here we provide evidence for an alternative H
2
-activation mechanism that instead involves direct ligand-to-ligand hydrogen transfer (LLHT) from a metal-bound H
2
molecule to a metal-coordinated olefin. An unusual pincer ligand that features two phosphine ligands and a central olefin supports the formation of a non-classical Ni–H
2
complex and the Ni(alkyl)(hydrido) product of LLHT, in rapid equilibrium with dissolved H
2
. The usefulness of this cooperative H
2
-activation mechanism for catalysis is demonstrated in the semihydrogenation of diphenylacetylene. Experimental and computational mechanistic investigations support the central role of LLHT for H
2
activation and catalytic semihydrogenation. The product distribution obtained is largely determined by the competition between (
E
)–(Z) isomerization and catalyst degradation by self-hydrogenation.
Activation of H
2
by a metal–olefin complex is characterized experimentally and computationally using a nickel pincer complex, showing that the reaction proceeds via a direct ligand-to-ligand hydrogen transfer mechanism. An application of this cooperative H
2
-activation mechanism is demonstrated in the nickel-catalysed semihydrogenation of diphenylacetylene.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41557-023-01380-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1524-9629</orcidid><orcidid>https://orcid.org/0000-0002-4134-5772</orcidid><orcidid>https://orcid.org/0000-0002-3137-6073</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2024-03, Vol.16 (3), p.417-425 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2898957534 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/638/263/406/939 639/638/563/934 639/638/77/885 639/638/77/888 639/638/911/406/910 Analytical Chemistry Biochemistry Catalysis Catalysts Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Hydrogenation Inorganic Chemistry Isomerization Ligands Metals Nickel Organic Chemistry Phosphine Phosphines Physical Chemistry |
title | Cooperative H2 activation at a nickel(0)–olefin centre |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20H2%20activation%20at%20a%20nickel(0)%E2%80%93olefin%20centre&rft.jtitle=Nature%20chemistry&rft.au=Sansores-Paredes,%20Mar%C3%ADa%20L.%20G.&rft.date=2024-03-01&rft.volume=16&rft.issue=3&rft.spage=417&rft.epage=425&rft.pages=417-425&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-023-01380-1&rft_dat=%3Cproquest_cross%3E2898957534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937498548&rft_id=info:pmid/&rfr_iscdi=true |