High‐Performance and Ecofriendly Organic Thermoelectrics Enabled by N‐Type Polythiophene Derivatives with Doping‐Induced Molecular Order
The ability of n‐type polymer thermoelectric materials to tolerate high doping loading limits further development of n‐type polymer conductivity. Herein, two alcohol‐soluble n‐type polythiophene derivatives that are n‐PT3 and n‐PT4 are reported. Due to the ability of two polymers to tolerate doping...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-02, Vol.36 (8), p.e2309679-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e2309679 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Deng, Sihui Kuang, Yazhuo Liu, Liyao Liu, Xinyu Liu, Jian Li, Jingyu Meng, Bin Di, Chong‐an Hu, Junli Liu, Jun |
description | The ability of n‐type polymer thermoelectric materials to tolerate high doping loading limits further development of n‐type polymer conductivity. Herein, two alcohol‐soluble n‐type polythiophene derivatives that are n‐PT3 and n‐PT4 are reported. Due to the ability of two polymers to tolerate doping loading more significantly than 100 mol%, both achieve electrical conductivity >100 S cm−1. Moreover, the conductivity of both polythiophenes remains almost constant at high doping concentrations with excellent doping tunability, which may be related to their ability to overcome charging‐induced backbone torsion and morphology change caused by saturated doping. The characterizations reveal that n‐PT4 has a high doping level and carrier concentration (>3.10 × 1020 cm−3), and the carrier concentration continues to increase as the doping concentration increases. In addition, doping leads to improved crystal structure of n‐PT4, and the crystallinity does not decrease significantly with increasing doping concentration; even the carrier mobility increases with it. The synergistic effect of these two leads to both n‐PT3 and n‐PT4 achieving a breakthrough of 100 in conductivity and power factor. The DMlmC‐doped n‐PT4 achieves a power factor of over 150 µW m−1 K−2. These values are among the highest for n‐type organic thermoelectric materials.
The doping‐induced molecular order changes the crystal structure of polythiophene and the carrier mobility increases with the increase of carrier concentration. The synergistic effect of the two causes the electrical conductivity and power factor to exceed 100. This research points out a direction to advance the development of high‐performance n‐type organic thermoelectric materials. |
doi_str_mv | 10.1002/adma.202309679 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898955391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929883641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-4fe0597eea30156593df3aa2cc4ecbed9d1415fe189ad4a5b14cbd6f38609c253</originalsourceid><addsrcrecordid>eNqFkU1v1DAQQC0EokvhyhFZ4sIliz_ibHxcdZe2Ukt7WM6RY082rhI72Emr3PgFqL-RX4JXW4rEhdNc3rwZ6SH0npIlJYR9VqZXS0YYJ7JYyRdoQQWjWU6keIkWRHKRySIvT9CbGO8ISRApXqMTXhJBKc8X6OeF3be_fjzeQmh86JXTgJUzeKt9Eyw40834JuyVsxrvWgi9hw70GKyOeOtU3YHB9Yy_JsVuHgDf-m4eW-uHFhzgDQR7r0Z7DxE_2LHFGz9Yt0_wpTOTTrvXPummToV0xUB4i141qovw7mmeom9ftruzi-zq5vzybH2Vab7iMssbIEKuABQnVBRCctNwpZjWOegajDQ0p6IBWkplciVqmuvaFA0vCyI1E_wUfTp6h-C_TxDHqrdRQ9cpB36KFStlKYXgkib04z_onZ-CS99VTDJZlrzID9TySOngYwzQVEOwvQpzRUl1KFUdSlXPpdLChyftVPdgnvE_aRIgj8CD7WD-j65ab67Xf-W_ARnJpRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929883641</pqid></control><display><type>article</type><title>High‐Performance and Ecofriendly Organic Thermoelectrics Enabled by N‐Type Polythiophene Derivatives with Doping‐Induced Molecular Order</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deng, Sihui ; Kuang, Yazhuo ; Liu, Liyao ; Liu, Xinyu ; Liu, Jian ; Li, Jingyu ; Meng, Bin ; Di, Chong‐an ; Hu, Junli ; Liu, Jun</creator><creatorcontrib>Deng, Sihui ; Kuang, Yazhuo ; Liu, Liyao ; Liu, Xinyu ; Liu, Jian ; Li, Jingyu ; Meng, Bin ; Di, Chong‐an ; Hu, Junli ; Liu, Jun</creatorcontrib><description>The ability of n‐type polymer thermoelectric materials to tolerate high doping loading limits further development of n‐type polymer conductivity. Herein, two alcohol‐soluble n‐type polythiophene derivatives that are n‐PT3 and n‐PT4 are reported. Due to the ability of two polymers to tolerate doping loading more significantly than 100 mol%, both achieve electrical conductivity >100 S cm−1. Moreover, the conductivity of both polythiophenes remains almost constant at high doping concentrations with excellent doping tunability, which may be related to their ability to overcome charging‐induced backbone torsion and morphology change caused by saturated doping. The characterizations reveal that n‐PT4 has a high doping level and carrier concentration (>3.10 × 1020 cm−3), and the carrier concentration continues to increase as the doping concentration increases. In addition, doping leads to improved crystal structure of n‐PT4, and the crystallinity does not decrease significantly with increasing doping concentration; even the carrier mobility increases with it. The synergistic effect of these two leads to both n‐PT3 and n‐PT4 achieving a breakthrough of 100 in conductivity and power factor. The DMlmC‐doped n‐PT4 achieves a power factor of over 150 µW m−1 K−2. These values are among the highest for n‐type organic thermoelectric materials.
The doping‐induced molecular order changes the crystal structure of polythiophene and the carrier mobility increases with the increase of carrier concentration. The synergistic effect of the two causes the electrical conductivity and power factor to exceed 100. This research points out a direction to advance the development of high‐performance n‐type organic thermoelectric materials.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202309679</identifier><identifier>PMID: 38051134</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier density ; Carrier mobility ; conducting materials ; Crystal structure ; Doping ; Electrical resistivity ; n‐doping ; n‐type polythiophene derivatives ; organic thermoelectrics ; Polymers ; Polythiophene ; Power factor ; Synergistic effect ; Thermoelectric materials</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (8), p.e2309679-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-4fe0597eea30156593df3aa2cc4ecbed9d1415fe189ad4a5b14cbd6f38609c253</citedby><cites>FETCH-LOGICAL-c3739-4fe0597eea30156593df3aa2cc4ecbed9d1415fe189ad4a5b14cbd6f38609c253</cites><orcidid>0000-0002-6704-3895 ; 0000-0003-1487-0069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202309679$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202309679$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38051134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Sihui</creatorcontrib><creatorcontrib>Kuang, Yazhuo</creatorcontrib><creatorcontrib>Liu, Liyao</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Jingyu</creatorcontrib><creatorcontrib>Meng, Bin</creatorcontrib><creatorcontrib>Di, Chong‐an</creatorcontrib><creatorcontrib>Hu, Junli</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><title>High‐Performance and Ecofriendly Organic Thermoelectrics Enabled by N‐Type Polythiophene Derivatives with Doping‐Induced Molecular Order</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The ability of n‐type polymer thermoelectric materials to tolerate high doping loading limits further development of n‐type polymer conductivity. Herein, two alcohol‐soluble n‐type polythiophene derivatives that are n‐PT3 and n‐PT4 are reported. Due to the ability of two polymers to tolerate doping loading more significantly than 100 mol%, both achieve electrical conductivity >100 S cm−1. Moreover, the conductivity of both polythiophenes remains almost constant at high doping concentrations with excellent doping tunability, which may be related to their ability to overcome charging‐induced backbone torsion and morphology change caused by saturated doping. The characterizations reveal that n‐PT4 has a high doping level and carrier concentration (>3.10 × 1020 cm−3), and the carrier concentration continues to increase as the doping concentration increases. In addition, doping leads to improved crystal structure of n‐PT4, and the crystallinity does not decrease significantly with increasing doping concentration; even the carrier mobility increases with it. The synergistic effect of these two leads to both n‐PT3 and n‐PT4 achieving a breakthrough of 100 in conductivity and power factor. The DMlmC‐doped n‐PT4 achieves a power factor of over 150 µW m−1 K−2. These values are among the highest for n‐type organic thermoelectric materials.
The doping‐induced molecular order changes the crystal structure of polythiophene and the carrier mobility increases with the increase of carrier concentration. The synergistic effect of the two causes the electrical conductivity and power factor to exceed 100. This research points out a direction to advance the development of high‐performance n‐type organic thermoelectric materials.</description><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>conducting materials</subject><subject>Crystal structure</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>n‐doping</subject><subject>n‐type polythiophene derivatives</subject><subject>organic thermoelectrics</subject><subject>Polymers</subject><subject>Polythiophene</subject><subject>Power factor</subject><subject>Synergistic effect</subject><subject>Thermoelectric materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQQC0EokvhyhFZ4sIliz_ibHxcdZe2Ukt7WM6RY082rhI72Emr3PgFqL-RX4JXW4rEhdNc3rwZ6SH0npIlJYR9VqZXS0YYJ7JYyRdoQQWjWU6keIkWRHKRySIvT9CbGO8ISRApXqMTXhJBKc8X6OeF3be_fjzeQmh86JXTgJUzeKt9Eyw40834JuyVsxrvWgi9hw70GKyOeOtU3YHB9Yy_JsVuHgDf-m4eW-uHFhzgDQR7r0Z7DxE_2LHFGz9Yt0_wpTOTTrvXPummToV0xUB4i141qovw7mmeom9ftruzi-zq5vzybH2Vab7iMssbIEKuABQnVBRCctNwpZjWOegajDQ0p6IBWkplciVqmuvaFA0vCyI1E_wUfTp6h-C_TxDHqrdRQ9cpB36KFStlKYXgkib04z_onZ-CS99VTDJZlrzID9TySOngYwzQVEOwvQpzRUl1KFUdSlXPpdLChyftVPdgnvE_aRIgj8CD7WD-j65ab67Xf-W_ARnJpRE</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Deng, Sihui</creator><creator>Kuang, Yazhuo</creator><creator>Liu, Liyao</creator><creator>Liu, Xinyu</creator><creator>Liu, Jian</creator><creator>Li, Jingyu</creator><creator>Meng, Bin</creator><creator>Di, Chong‐an</creator><creator>Hu, Junli</creator><creator>Liu, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6704-3895</orcidid><orcidid>https://orcid.org/0000-0003-1487-0069</orcidid></search><sort><creationdate>20240201</creationdate><title>High‐Performance and Ecofriendly Organic Thermoelectrics Enabled by N‐Type Polythiophene Derivatives with Doping‐Induced Molecular Order</title><author>Deng, Sihui ; Kuang, Yazhuo ; Liu, Liyao ; Liu, Xinyu ; Liu, Jian ; Li, Jingyu ; Meng, Bin ; Di, Chong‐an ; Hu, Junli ; Liu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-4fe0597eea30156593df3aa2cc4ecbed9d1415fe189ad4a5b14cbd6f38609c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>conducting materials</topic><topic>Crystal structure</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>n‐doping</topic><topic>n‐type polythiophene derivatives</topic><topic>organic thermoelectrics</topic><topic>Polymers</topic><topic>Polythiophene</topic><topic>Power factor</topic><topic>Synergistic effect</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Sihui</creatorcontrib><creatorcontrib>Kuang, Yazhuo</creatorcontrib><creatorcontrib>Liu, Liyao</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Jingyu</creatorcontrib><creatorcontrib>Meng, Bin</creatorcontrib><creatorcontrib>Di, Chong‐an</creatorcontrib><creatorcontrib>Hu, Junli</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Sihui</au><au>Kuang, Yazhuo</au><au>Liu, Liyao</au><au>Liu, Xinyu</au><au>Liu, Jian</au><au>Li, Jingyu</au><au>Meng, Bin</au><au>Di, Chong‐an</au><au>Hu, Junli</au><au>Liu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Performance and Ecofriendly Organic Thermoelectrics Enabled by N‐Type Polythiophene Derivatives with Doping‐Induced Molecular Order</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><spage>e2309679</spage><epage>n/a</epage><pages>e2309679-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The ability of n‐type polymer thermoelectric materials to tolerate high doping loading limits further development of n‐type polymer conductivity. Herein, two alcohol‐soluble n‐type polythiophene derivatives that are n‐PT3 and n‐PT4 are reported. Due to the ability of two polymers to tolerate doping loading more significantly than 100 mol%, both achieve electrical conductivity >100 S cm−1. Moreover, the conductivity of both polythiophenes remains almost constant at high doping concentrations with excellent doping tunability, which may be related to their ability to overcome charging‐induced backbone torsion and morphology change caused by saturated doping. The characterizations reveal that n‐PT4 has a high doping level and carrier concentration (>3.10 × 1020 cm−3), and the carrier concentration continues to increase as the doping concentration increases. In addition, doping leads to improved crystal structure of n‐PT4, and the crystallinity does not decrease significantly with increasing doping concentration; even the carrier mobility increases with it. The synergistic effect of these two leads to both n‐PT3 and n‐PT4 achieving a breakthrough of 100 in conductivity and power factor. The DMlmC‐doped n‐PT4 achieves a power factor of over 150 µW m−1 K−2. These values are among the highest for n‐type organic thermoelectric materials.
The doping‐induced molecular order changes the crystal structure of polythiophene and the carrier mobility increases with the increase of carrier concentration. The synergistic effect of the two causes the electrical conductivity and power factor to exceed 100. This research points out a direction to advance the development of high‐performance n‐type organic thermoelectric materials.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38051134</pmid><doi>10.1002/adma.202309679</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6704-3895</orcidid><orcidid>https://orcid.org/0000-0003-1487-0069</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-02, Vol.36 (8), p.e2309679-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2898955391 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carrier density Carrier mobility conducting materials Crystal structure Doping Electrical resistivity n‐doping n‐type polythiophene derivatives organic thermoelectrics Polymers Polythiophene Power factor Synergistic effect Thermoelectric materials |
title | High‐Performance and Ecofriendly Organic Thermoelectrics Enabled by N‐Type Polythiophene Derivatives with Doping‐Induced Molecular Order |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Performance%20and%20Ecofriendly%20Organic%20Thermoelectrics%20Enabled%20by%20N%E2%80%90Type%20Polythiophene%20Derivatives%20with%20Doping%E2%80%90Induced%20Molecular%20Order&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Deng,%20Sihui&rft.date=2024-02-01&rft.volume=36&rft.issue=8&rft.spage=e2309679&rft.epage=n/a&rft.pages=e2309679-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202309679&rft_dat=%3Cproquest_cross%3E2929883641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929883641&rft_id=info:pmid/38051134&rfr_iscdi=true |