Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis

Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are esse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (18), p.e2307252-n/a
Hauptverfasser: Chen, Lei, Wang, Hao−Yu, Tian, Wen−Wen, Wang, Lei, Sun, Ming−Lei, Ren, Jin−Tao, Yuan, Zhong−Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e2307252
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Chen, Lei
Wang, Hao−Yu
Tian, Wen−Wen
Wang, Lei
Sun, Ming−Lei
Ren, Jin−Tao
Yuan, Zhong−Yong
description Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel‐vanadium oxide nanosheet arrays grown on porous nickel foam (Ni‐V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni‐V2O3/PNF delivers 10 mA cm−2 at an overpotential of 54 mV for HER and a mass‐specific kinetic current of 19.3 A g−1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron‐deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non‐precious‐metal‐based electrocatalysts through the IEF strategy. A robust internal electric field has been effectively engineered to induce an asymmetrical charge distribution on the Ni‐V2O3 heterostructure, wherein the negative charge enriched V2O3 side facilitates the dissociation of water molecules, while the positively charged Ni side optimizes the H* adsorption, thus ensuring the excellent HER and HOR performance in alkaline electrolyte.
doi_str_mv 10.1002/smll.202307252
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898954776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049591572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-760282fed362a456074fbd38ac872775c9e525d4fea6d93438f0d999eb9a1d3d3</originalsourceid><addsrcrecordid>eNqFkUtrGzEURkVJaR7ttssiyCYbu3qOpKUJThxw04XbtZClO44SWZOMxoShf77jR13IJqsruOc7SPoQ-krJmBLCvpd1SmNGGCeKSfYBndGK8lGlmTk5nik5ReelPBLCKRPqEzrlmkihKT9Df6bZLVPMK3yXO2izS3iawHdt9PgmQgo4ZjyDYdWsIEOzKfje5aY8AHQFdw1exFWOdfQud6nHE-8hQes6wJP05AYx4FkfduGDuPGuc6kvsXxGH2uXCnw5zAv0-2b663o2mv-8vbuezEdeUM5GqiJMsxoCr5gTsiJK1MvAtfNaMaWkNyCZDKIGVwXDBdc1CcYYWBpHAw_8Al3tvc9t87KB0tl1LMM9k9s9yDJttJFCqWpAL9-gj81m-yvFciKMNFQqNlDjPeXbppQWavvcxrVre0uJ3dZit7XYYy1D4NtBu1muIRzxfz0MgNkDrzFB_47OLn7M5__lfwFwyZr2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049591572</pqid></control><display><type>article</type><title>Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Lei ; Wang, Hao−Yu ; Tian, Wen−Wen ; Wang, Lei ; Sun, Ming−Lei ; Ren, Jin−Tao ; Yuan, Zhong−Yong</creator><creatorcontrib>Chen, Lei ; Wang, Hao−Yu ; Tian, Wen−Wen ; Wang, Lei ; Sun, Ming−Lei ; Ren, Jin−Tao ; Yuan, Zhong−Yong</creatorcontrib><description>Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel‐vanadium oxide nanosheet arrays grown on porous nickel foam (Ni‐V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni‐V2O3/PNF delivers 10 mA cm−2 at an overpotential of 54 mV for HER and a mass‐specific kinetic current of 19.3 A g−1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron‐deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non‐precious‐metal‐based electrocatalysts through the IEF strategy. A robust internal electric field has been effectively engineered to induce an asymmetrical charge distribution on the Ni‐V2O3 heterostructure, wherein the negative charge enriched V2O3 side facilitates the dissociation of water molecules, while the positively charged Ni side optimizes the H* adsorption, thus ensuring the excellent HER and HOR performance in alkaline electrolyte.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307252</identifier><identifier>PMID: 38054813</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalytic activity ; Charge distribution ; Density functional theory ; Electric fields ; Electrocatalysis ; Electrocatalysts ; Electrolytes ; Gibbs free energy ; Hydrogen ; hydrogen evolution reaction ; Hydrogen evolution reactions ; hydrogen oxidation reaction ; interfacial electron transfer ; Metal foams ; Nanosheets ; Nickel ; Oxidation ; vanadium oxide ; Vanadium oxides</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (18), p.e2307252-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-760282fed362a456074fbd38ac872775c9e525d4fea6d93438f0d999eb9a1d3d3</citedby><cites>FETCH-LOGICAL-c4132-760282fed362a456074fbd38ac872775c9e525d4fea6d93438f0d999eb9a1d3d3</cites><orcidid>0000-0002-3790-8181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307252$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307252$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38054813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wang, Hao−Yu</creatorcontrib><creatorcontrib>Tian, Wen−Wen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Sun, Ming−Lei</creatorcontrib><creatorcontrib>Ren, Jin−Tao</creatorcontrib><creatorcontrib>Yuan, Zhong−Yong</creatorcontrib><title>Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel‐vanadium oxide nanosheet arrays grown on porous nickel foam (Ni‐V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni‐V2O3/PNF delivers 10 mA cm−2 at an overpotential of 54 mV for HER and a mass‐specific kinetic current of 19.3 A g−1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron‐deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non‐precious‐metal‐based electrocatalysts through the IEF strategy. A robust internal electric field has been effectively engineered to induce an asymmetrical charge distribution on the Ni‐V2O3 heterostructure, wherein the negative charge enriched V2O3 side facilitates the dissociation of water molecules, while the positively charged Ni side optimizes the H* adsorption, thus ensuring the excellent HER and HOR performance in alkaline electrolyte.</description><subject>Catalytic activity</subject><subject>Charge distribution</subject><subject>Density functional theory</subject><subject>Electric fields</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Gibbs free energy</subject><subject>Hydrogen</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>hydrogen oxidation reaction</subject><subject>interfacial electron transfer</subject><subject>Metal foams</subject><subject>Nanosheets</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>vanadium oxide</subject><subject>Vanadium oxides</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtrGzEURkVJaR7ttssiyCYbu3qOpKUJThxw04XbtZClO44SWZOMxoShf77jR13IJqsruOc7SPoQ-krJmBLCvpd1SmNGGCeKSfYBndGK8lGlmTk5nik5ReelPBLCKRPqEzrlmkihKT9Df6bZLVPMK3yXO2izS3iawHdt9PgmQgo4ZjyDYdWsIEOzKfje5aY8AHQFdw1exFWOdfQud6nHE-8hQes6wJP05AYx4FkfduGDuPGuc6kvsXxGH2uXCnw5zAv0-2b663o2mv-8vbuezEdeUM5GqiJMsxoCr5gTsiJK1MvAtfNaMaWkNyCZDKIGVwXDBdc1CcYYWBpHAw_8Al3tvc9t87KB0tl1LMM9k9s9yDJttJFCqWpAL9-gj81m-yvFciKMNFQqNlDjPeXbppQWavvcxrVre0uJ3dZit7XYYy1D4NtBu1muIRzxfz0MgNkDrzFB_47OLn7M5__lfwFwyZr2</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Chen, Lei</creator><creator>Wang, Hao−Yu</creator><creator>Tian, Wen−Wen</creator><creator>Wang, Lei</creator><creator>Sun, Ming−Lei</creator><creator>Ren, Jin−Tao</creator><creator>Yuan, Zhong−Yong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3790-8181</orcidid></search><sort><creationdate>20240501</creationdate><title>Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis</title><author>Chen, Lei ; Wang, Hao−Yu ; Tian, Wen−Wen ; Wang, Lei ; Sun, Ming−Lei ; Ren, Jin−Tao ; Yuan, Zhong−Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-760282fed362a456074fbd38ac872775c9e525d4fea6d93438f0d999eb9a1d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalytic activity</topic><topic>Charge distribution</topic><topic>Density functional theory</topic><topic>Electric fields</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Gibbs free energy</topic><topic>Hydrogen</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>hydrogen oxidation reaction</topic><topic>interfacial electron transfer</topic><topic>Metal foams</topic><topic>Nanosheets</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>vanadium oxide</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wang, Hao−Yu</creatorcontrib><creatorcontrib>Tian, Wen−Wen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Sun, Ming−Lei</creatorcontrib><creatorcontrib>Ren, Jin−Tao</creatorcontrib><creatorcontrib>Yuan, Zhong−Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lei</au><au>Wang, Hao−Yu</au><au>Tian, Wen−Wen</au><au>Wang, Lei</au><au>Sun, Ming−Lei</au><au>Ren, Jin−Tao</au><au>Yuan, Zhong−Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>18</issue><spage>e2307252</spage><epage>n/a</epage><pages>e2307252-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel‐vanadium oxide nanosheet arrays grown on porous nickel foam (Ni‐V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni‐V2O3/PNF delivers 10 mA cm−2 at an overpotential of 54 mV for HER and a mass‐specific kinetic current of 19.3 A g−1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron‐deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non‐precious‐metal‐based electrocatalysts through the IEF strategy. A robust internal electric field has been effectively engineered to induce an asymmetrical charge distribution on the Ni‐V2O3 heterostructure, wherein the negative charge enriched V2O3 side facilitates the dissociation of water molecules, while the positively charged Ni side optimizes the H* adsorption, thus ensuring the excellent HER and HOR performance in alkaline electrolyte.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38054813</pmid><doi>10.1002/smll.202307252</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3790-8181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (18), p.e2307252-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2898954776
source Wiley Online Library Journals Frontfile Complete
subjects Catalytic activity
Charge distribution
Density functional theory
Electric fields
Electrocatalysis
Electrocatalysts
Electrolytes
Gibbs free energy
Hydrogen
hydrogen evolution reaction
Hydrogen evolution reactions
hydrogen oxidation reaction
interfacial electron transfer
Metal foams
Nanosheets
Nickel
Oxidation
vanadium oxide
Vanadium oxides
title Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Internal%20Electric%20Field%20in%20Heterogeneous%20Nanosheets%20to%20Significantly%20Accelerate%20Alkaline%20Hydrogen%20Electrocatalysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Lei&rft.date=2024-05-01&rft.volume=20&rft.issue=18&rft.spage=e2307252&rft.epage=n/a&rft.pages=e2307252-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307252&rft_dat=%3Cproquest_cross%3E3049591572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049591572&rft_id=info:pmid/38054813&rfr_iscdi=true