Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis
Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are esse...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (18), p.e2307252-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | e2307252 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Chen, Lei Wang, Hao−Yu Tian, Wen−Wen Wang, Lei Sun, Ming−Lei Ren, Jin−Tao Yuan, Zhong−Yong |
description | Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel‐vanadium oxide nanosheet arrays grown on porous nickel foam (Ni‐V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni‐V2O3/PNF delivers 10 mA cm−2 at an overpotential of 54 mV for HER and a mass‐specific kinetic current of 19.3 A g−1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron‐deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non‐precious‐metal‐based electrocatalysts through the IEF strategy.
A robust internal electric field has been effectively engineered to induce an asymmetrical charge distribution on the Ni‐V2O3 heterostructure, wherein the negative charge enriched V2O3 side facilitates the dissociation of water molecules, while the positively charged Ni side optimizes the H* adsorption, thus ensuring the excellent HER and HOR performance in alkaline electrolyte. |
doi_str_mv | 10.1002/smll.202307252 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898954776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049591572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-760282fed362a456074fbd38ac872775c9e525d4fea6d93438f0d999eb9a1d3d3</originalsourceid><addsrcrecordid>eNqFkUtrGzEURkVJaR7ttssiyCYbu3qOpKUJThxw04XbtZClO44SWZOMxoShf77jR13IJqsruOc7SPoQ-krJmBLCvpd1SmNGGCeKSfYBndGK8lGlmTk5nik5ReelPBLCKRPqEzrlmkihKT9Df6bZLVPMK3yXO2izS3iawHdt9PgmQgo4ZjyDYdWsIEOzKfje5aY8AHQFdw1exFWOdfQud6nHE-8hQes6wJP05AYx4FkfduGDuPGuc6kvsXxGH2uXCnw5zAv0-2b663o2mv-8vbuezEdeUM5GqiJMsxoCr5gTsiJK1MvAtfNaMaWkNyCZDKIGVwXDBdc1CcYYWBpHAw_8Al3tvc9t87KB0tl1LMM9k9s9yDJttJFCqWpAL9-gj81m-yvFciKMNFQqNlDjPeXbppQWavvcxrVre0uJ3dZit7XYYy1D4NtBu1muIRzxfz0MgNkDrzFB_47OLn7M5__lfwFwyZr2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049591572</pqid></control><display><type>article</type><title>Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Lei ; Wang, Hao−Yu ; Tian, Wen−Wen ; Wang, Lei ; Sun, Ming−Lei ; Ren, Jin−Tao ; Yuan, Zhong−Yong</creator><creatorcontrib>Chen, Lei ; Wang, Hao−Yu ; Tian, Wen−Wen ; Wang, Lei ; Sun, Ming−Lei ; Ren, Jin−Tao ; Yuan, Zhong−Yong</creatorcontrib><description>Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel‐vanadium oxide nanosheet arrays grown on porous nickel foam (Ni‐V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni‐V2O3/PNF delivers 10 mA cm−2 at an overpotential of 54 mV for HER and a mass‐specific kinetic current of 19.3 A g−1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron‐deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non‐precious‐metal‐based electrocatalysts through the IEF strategy.
A robust internal electric field has been effectively engineered to induce an asymmetrical charge distribution on the Ni‐V2O3 heterostructure, wherein the negative charge enriched V2O3 side facilitates the dissociation of water molecules, while the positively charged Ni side optimizes the H* adsorption, thus ensuring the excellent HER and HOR performance in alkaline electrolyte.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307252</identifier><identifier>PMID: 38054813</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalytic activity ; Charge distribution ; Density functional theory ; Electric fields ; Electrocatalysis ; Electrocatalysts ; Electrolytes ; Gibbs free energy ; Hydrogen ; hydrogen evolution reaction ; Hydrogen evolution reactions ; hydrogen oxidation reaction ; interfacial electron transfer ; Metal foams ; Nanosheets ; Nickel ; Oxidation ; vanadium oxide ; Vanadium oxides</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (18), p.e2307252-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-760282fed362a456074fbd38ac872775c9e525d4fea6d93438f0d999eb9a1d3d3</citedby><cites>FETCH-LOGICAL-c4132-760282fed362a456074fbd38ac872775c9e525d4fea6d93438f0d999eb9a1d3d3</cites><orcidid>0000-0002-3790-8181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307252$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307252$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38054813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wang, Hao−Yu</creatorcontrib><creatorcontrib>Tian, Wen−Wen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Sun, Ming−Lei</creatorcontrib><creatorcontrib>Ren, Jin−Tao</creatorcontrib><creatorcontrib>Yuan, Zhong−Yong</creatorcontrib><title>Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel‐vanadium oxide nanosheet arrays grown on porous nickel foam (Ni‐V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni‐V2O3/PNF delivers 10 mA cm−2 at an overpotential of 54 mV for HER and a mass‐specific kinetic current of 19.3 A g−1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron‐deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non‐precious‐metal‐based electrocatalysts through the IEF strategy.
A robust internal electric field has been effectively engineered to induce an asymmetrical charge distribution on the Ni‐V2O3 heterostructure, wherein the negative charge enriched V2O3 side facilitates the dissociation of water molecules, while the positively charged Ni side optimizes the H* adsorption, thus ensuring the excellent HER and HOR performance in alkaline electrolyte.</description><subject>Catalytic activity</subject><subject>Charge distribution</subject><subject>Density functional theory</subject><subject>Electric fields</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Gibbs free energy</subject><subject>Hydrogen</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>hydrogen oxidation reaction</subject><subject>interfacial electron transfer</subject><subject>Metal foams</subject><subject>Nanosheets</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>vanadium oxide</subject><subject>Vanadium oxides</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtrGzEURkVJaR7ttssiyCYbu3qOpKUJThxw04XbtZClO44SWZOMxoShf77jR13IJqsruOc7SPoQ-krJmBLCvpd1SmNGGCeKSfYBndGK8lGlmTk5nik5ReelPBLCKRPqEzrlmkihKT9Df6bZLVPMK3yXO2izS3iawHdt9PgmQgo4ZjyDYdWsIEOzKfje5aY8AHQFdw1exFWOdfQud6nHE-8hQes6wJP05AYx4FkfduGDuPGuc6kvsXxGH2uXCnw5zAv0-2b663o2mv-8vbuezEdeUM5GqiJMsxoCr5gTsiJK1MvAtfNaMaWkNyCZDKIGVwXDBdc1CcYYWBpHAw_8Al3tvc9t87KB0tl1LMM9k9s9yDJttJFCqWpAL9-gj81m-yvFciKMNFQqNlDjPeXbppQWavvcxrVre0uJ3dZit7XYYy1D4NtBu1muIRzxfz0MgNkDrzFB_47OLn7M5__lfwFwyZr2</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Chen, Lei</creator><creator>Wang, Hao−Yu</creator><creator>Tian, Wen−Wen</creator><creator>Wang, Lei</creator><creator>Sun, Ming−Lei</creator><creator>Ren, Jin−Tao</creator><creator>Yuan, Zhong−Yong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3790-8181</orcidid></search><sort><creationdate>20240501</creationdate><title>Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis</title><author>Chen, Lei ; Wang, Hao−Yu ; Tian, Wen−Wen ; Wang, Lei ; Sun, Ming−Lei ; Ren, Jin−Tao ; Yuan, Zhong−Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-760282fed362a456074fbd38ac872775c9e525d4fea6d93438f0d999eb9a1d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalytic activity</topic><topic>Charge distribution</topic><topic>Density functional theory</topic><topic>Electric fields</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Gibbs free energy</topic><topic>Hydrogen</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>hydrogen oxidation reaction</topic><topic>interfacial electron transfer</topic><topic>Metal foams</topic><topic>Nanosheets</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>vanadium oxide</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wang, Hao−Yu</creatorcontrib><creatorcontrib>Tian, Wen−Wen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Sun, Ming−Lei</creatorcontrib><creatorcontrib>Ren, Jin−Tao</creatorcontrib><creatorcontrib>Yuan, Zhong−Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lei</au><au>Wang, Hao−Yu</au><au>Tian, Wen−Wen</au><au>Wang, Lei</au><au>Sun, Ming−Lei</au><au>Ren, Jin−Tao</au><au>Yuan, Zhong−Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>18</issue><spage>e2307252</spage><epage>n/a</epage><pages>e2307252-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel‐vanadium oxide nanosheet arrays grown on porous nickel foam (Ni‐V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni‐V2O3/PNF delivers 10 mA cm−2 at an overpotential of 54 mV for HER and a mass‐specific kinetic current of 19.3 A g−1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron‐deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non‐precious‐metal‐based electrocatalysts through the IEF strategy.
A robust internal electric field has been effectively engineered to induce an asymmetrical charge distribution on the Ni‐V2O3 heterostructure, wherein the negative charge enriched V2O3 side facilitates the dissociation of water molecules, while the positively charged Ni side optimizes the H* adsorption, thus ensuring the excellent HER and HOR performance in alkaline electrolyte.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38054813</pmid><doi>10.1002/smll.202307252</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3790-8181</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (18), p.e2307252-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2898954776 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalytic activity Charge distribution Density functional theory Electric fields Electrocatalysis Electrocatalysts Electrolytes Gibbs free energy Hydrogen hydrogen evolution reaction Hydrogen evolution reactions hydrogen oxidation reaction interfacial electron transfer Metal foams Nanosheets Nickel Oxidation vanadium oxide Vanadium oxides |
title | Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Internal%20Electric%20Field%20in%20Heterogeneous%20Nanosheets%20to%20Significantly%20Accelerate%20Alkaline%20Hydrogen%20Electrocatalysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Lei&rft.date=2024-05-01&rft.volume=20&rft.issue=18&rft.spage=e2307252&rft.epage=n/a&rft.pages=e2307252-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307252&rft_dat=%3Cproquest_cross%3E3049591572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049591572&rft_id=info:pmid/38054813&rfr_iscdi=true |