A fractal model of reinforcement of elastoplastic nanocomposites

Within the framework of fractal analysis and percolation theory, an alternative model of reinforcement of filled polymers is offered. Practically, this model can be used only to describe the reinforcement of nanocomposites, because, according to the treatment considered, a pronounced reinforcement c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of composite materials 2006-11, Vol.42 (6), p.555-558
Hauptverfasser: Kozlov, G. V., Burya, A. I., Lipatov, Yu. S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 6
container_start_page 555
container_title Mechanics of composite materials
container_volume 42
creator Kozlov, G. V.
Burya, A. I.
Lipatov, Yu. S.
description Within the framework of fractal analysis and percolation theory, an alternative model of reinforcement of filled polymers is offered. Practically, this model can be used only to describe the reinforcement of nanocomposites, because, according to the treatment considered, a pronounced reinforcement can be reached only at ratios of filler particle diameter to the statistical segment length of about 10 and less. A theoretical calculation showed a good qualitative and quantitative agreement with experiments. The type of reinforcement mechanism of composites is determined by the type of the space (fractal or Euclidean) in which the structure of the polymeric matrix is formed.
doi_str_mv 10.1007/s11029-006-0066-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28985883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28985883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-116e7f7130fee1074fdd3d7d211db50f1f084ccf30d8d201f1dea2c2359937613</originalsourceid><addsrcrecordid>eNotkE9LxDAQxYMoWFc_gLeevEVnkm2S3lwW_8GCFz2HmEyg0jY16R789rash_cGHr8ZmMfYLcI9AuiHggii5QBqleLmjFXYaMlNK8Q5qwBb5I1SzSW7KuUbYNkCVbHHXR2z87Pr6yEF6usU60zdGFP2NNA4rwH1rsxpWr3z9ejG5NMwpdLNVK7ZRXR9oZv_uWGfz08f-1d-eH952-8O3AutZo6oSEeNEiIRgt7GEGTQQSCGrwYiRjBb76OEYIIAjBjICS9k07ZSK5Qbdne6O-X0c6Qy26ErnvrejZSOxQrTmsYYuYB4An1OpWSKdsrd4PKvRbBrV_bUlV3-X6WskX-_KVy7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28985883</pqid></control><display><type>article</type><title>A fractal model of reinforcement of elastoplastic nanocomposites</title><source>SpringerLink Journals</source><creator>Kozlov, G. V. ; Burya, A. I. ; Lipatov, Yu. S.</creator><creatorcontrib>Kozlov, G. V. ; Burya, A. I. ; Lipatov, Yu. S.</creatorcontrib><description>Within the framework of fractal analysis and percolation theory, an alternative model of reinforcement of filled polymers is offered. Practically, this model can be used only to describe the reinforcement of nanocomposites, because, according to the treatment considered, a pronounced reinforcement can be reached only at ratios of filler particle diameter to the statistical segment length of about 10 and less. A theoretical calculation showed a good qualitative and quantitative agreement with experiments. The type of reinforcement mechanism of composites is determined by the type of the space (fractal or Euclidean) in which the structure of the polymeric matrix is formed.</description><identifier>ISSN: 0191-5665</identifier><identifier>EISSN: 1573-8922</identifier><identifier>DOI: 10.1007/s11029-006-0066-8</identifier><language>eng</language><ispartof>Mechanics of composite materials, 2006-11, Vol.42 (6), p.555-558</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-116e7f7130fee1074fdd3d7d211db50f1f084ccf30d8d201f1dea2c2359937613</citedby><cites>FETCH-LOGICAL-c276t-116e7f7130fee1074fdd3d7d211db50f1f084ccf30d8d201f1dea2c2359937613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kozlov, G. V.</creatorcontrib><creatorcontrib>Burya, A. I.</creatorcontrib><creatorcontrib>Lipatov, Yu. S.</creatorcontrib><title>A fractal model of reinforcement of elastoplastic nanocomposites</title><title>Mechanics of composite materials</title><description>Within the framework of fractal analysis and percolation theory, an alternative model of reinforcement of filled polymers is offered. Practically, this model can be used only to describe the reinforcement of nanocomposites, because, according to the treatment considered, a pronounced reinforcement can be reached only at ratios of filler particle diameter to the statistical segment length of about 10 and less. A theoretical calculation showed a good qualitative and quantitative agreement with experiments. The type of reinforcement mechanism of composites is determined by the type of the space (fractal or Euclidean) in which the structure of the polymeric matrix is formed.</description><issn>0191-5665</issn><issn>1573-8922</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkE9LxDAQxYMoWFc_gLeevEVnkm2S3lwW_8GCFz2HmEyg0jY16R789rash_cGHr8ZmMfYLcI9AuiHggii5QBqleLmjFXYaMlNK8Q5qwBb5I1SzSW7KuUbYNkCVbHHXR2z87Pr6yEF6usU60zdGFP2NNA4rwH1rsxpWr3z9ejG5NMwpdLNVK7ZRXR9oZv_uWGfz08f-1d-eH952-8O3AutZo6oSEeNEiIRgt7GEGTQQSCGrwYiRjBb76OEYIIAjBjICS9k07ZSK5Qbdne6O-X0c6Qy26ErnvrejZSOxQrTmsYYuYB4An1OpWSKdsrd4PKvRbBrV_bUlV3-X6WskX-_KVy7</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Kozlov, G. V.</creator><creator>Burya, A. I.</creator><creator>Lipatov, Yu. S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200611</creationdate><title>A fractal model of reinforcement of elastoplastic nanocomposites</title><author>Kozlov, G. V. ; Burya, A. I. ; Lipatov, Yu. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-116e7f7130fee1074fdd3d7d211db50f1f084ccf30d8d201f1dea2c2359937613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozlov, G. V.</creatorcontrib><creatorcontrib>Burya, A. I.</creatorcontrib><creatorcontrib>Lipatov, Yu. S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Mechanics of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozlov, G. V.</au><au>Burya, A. I.</au><au>Lipatov, Yu. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fractal model of reinforcement of elastoplastic nanocomposites</atitle><jtitle>Mechanics of composite materials</jtitle><date>2006-11</date><risdate>2006</risdate><volume>42</volume><issue>6</issue><spage>555</spage><epage>558</epage><pages>555-558</pages><issn>0191-5665</issn><eissn>1573-8922</eissn><abstract>Within the framework of fractal analysis and percolation theory, an alternative model of reinforcement of filled polymers is offered. Practically, this model can be used only to describe the reinforcement of nanocomposites, because, according to the treatment considered, a pronounced reinforcement can be reached only at ratios of filler particle diameter to the statistical segment length of about 10 and less. A theoretical calculation showed a good qualitative and quantitative agreement with experiments. The type of reinforcement mechanism of composites is determined by the type of the space (fractal or Euclidean) in which the structure of the polymeric matrix is formed.</abstract><doi>10.1007/s11029-006-0066-8</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0191-5665
ispartof Mechanics of composite materials, 2006-11, Vol.42 (6), p.555-558
issn 0191-5665
1573-8922
language eng
recordid cdi_proquest_miscellaneous_28985883
source SpringerLink Journals
title A fractal model of reinforcement of elastoplastic nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fractal%20model%20of%20reinforcement%20of%20elastoplastic%20nanocomposites&rft.jtitle=Mechanics%20of%20composite%20materials&rft.au=Kozlov,%20G.%20V.&rft.date=2006-11&rft.volume=42&rft.issue=6&rft.spage=555&rft.epage=558&rft.pages=555-558&rft.issn=0191-5665&rft.eissn=1573-8922&rft_id=info:doi/10.1007/s11029-006-0066-8&rft_dat=%3Cproquest_cross%3E28985883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28985883&rft_id=info:pmid/&rfr_iscdi=true