Informative Artifacts in AI-Assisted Care
To the Editor: Ferryman et al. (Aug. 31 issue)1 acknowledge that the entire health care system suffers from the absence of data on race and ethnicity, particularly for underserved populations. Artificial intelligence (AI) applications that are trained on such health care data sets are inherently bia...
Gespeichert in:
Veröffentlicht in: | The New England journal of medicine 2023-11, Vol.389 (22), p.2113-2115 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2115 |
---|---|
container_issue | 22 |
container_start_page | 2113 |
container_title | The New England journal of medicine |
container_volume | 389 |
creator | Azizi, Zahra Vedelli, Jordan K H Anand, Kanwaljeet J S |
description | To the Editor: Ferryman et al. (Aug. 31 issue)1 acknowledge that the entire health care system suffers from the absence of data on race and ethnicity, particularly for underserved populations. Artificial intelligence (AI) applications that are trained on such health care data sets are inherently biased and likely to accentuate widening health inequities for underrepresented racial and ethnic groups.2,3 When algorithmic bias aligns with current manifestations of injustice, skewed AI tools will lead to greater inequity and discrimination.1-3 The proposal by Ferryman et al.1 that AI-generated patterns be considered as artifacts that provide insight into the societies and institutions that . . . |
doi_str_mv | 10.1056/NEJMc2311525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898312166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898312161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-ccf63328e761157f6cffba89342dcd708b540ba572e6353720700677c954bf403</originalsourceid><addsrcrecordid>eNqN0UtLw0AQB_BFFFurN88S8KJgdPa9OYZSNVL1ouew2exCSh51NxH89qa0injqXObyYx78ETrHcIuBi7uXxdOzIRRjTvgBmmJOacwYiEM0BSAqZjKhE3QSwgrGwiw5RhOqgCkCbIqus9Z1vtF99Wmj1PeV06YPUdVGaRanIVSht2U0196eoiOn62DPdn2G3u8Xb_PHePn6kM3TZWzGA_rYGCcoJcpKMZ4knTDOFVollJHSlBJUwRkUmktiBeVUEpAAQkqTcFY4BnSGrrZz1777GGzo86YKxta1bm03hJyoRFFMsBD7U7w35clIL__RVTf4dvx5ozgVBMNm981WGd-F4K3L175qtP_KMeSbYPK_wYz8Yjd0KBpb_uKfJOg3y9qDgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895362106</pqid></control><display><type>article</type><title>Informative Artifacts in AI-Assisted Care</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>New England Journal of Medicine</source><creator>Azizi, Zahra ; Vedelli, Jordan K H ; Anand, Kanwaljeet J S</creator><creatorcontrib>Azizi, Zahra ; Vedelli, Jordan K H ; Anand, Kanwaljeet J S</creatorcontrib><description>To the Editor: Ferryman et al. (Aug. 31 issue)1 acknowledge that the entire health care system suffers from the absence of data on race and ethnicity, particularly for underserved populations. Artificial intelligence (AI) applications that are trained on such health care data sets are inherently biased and likely to accentuate widening health inequities for underrepresented racial and ethnic groups.2,3 When algorithmic bias aligns with current manifestations of injustice, skewed AI tools will lead to greater inequity and discrimination.1-3 The proposal by Ferryman et al.1 that AI-generated patterns be considered as artifacts that provide insight into the societies and institutions that . . .</description><identifier>ISSN: 0028-4793</identifier><identifier>EISSN: 1533-4406</identifier><identifier>DOI: 10.1056/NEJMc2311525</identifier><identifier>PMID: 38048204</identifier><language>eng</language><publisher>United States: Massachusetts Medical Society</publisher><subject>Artificial Intelligence ; Bias ; Conflicts of interest ; Health care ; Health disparities ; Humans ; Minority & ethnic groups ; Patient safety</subject><ispartof>The New England journal of medicine, 2023-11, Vol.389 (22), p.2113-2115</ispartof><rights>Copyright © 2023 Massachusetts Medical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-ccf63328e761157f6cffba89342dcd708b540ba572e6353720700677c954bf403</citedby><cites>FETCH-LOGICAL-c525t-ccf63328e761157f6cffba89342dcd708b540ba572e6353720700677c954bf403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2895362106?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,2759,27924,27925,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38048204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azizi, Zahra</creatorcontrib><creatorcontrib>Vedelli, Jordan K H</creatorcontrib><creatorcontrib>Anand, Kanwaljeet J S</creatorcontrib><title>Informative Artifacts in AI-Assisted Care</title><title>The New England journal of medicine</title><addtitle>N Engl J Med</addtitle><description>To the Editor: Ferryman et al. (Aug. 31 issue)1 acknowledge that the entire health care system suffers from the absence of data on race and ethnicity, particularly for underserved populations. Artificial intelligence (AI) applications that are trained on such health care data sets are inherently biased and likely to accentuate widening health inequities for underrepresented racial and ethnic groups.2,3 When algorithmic bias aligns with current manifestations of injustice, skewed AI tools will lead to greater inequity and discrimination.1-3 The proposal by Ferryman et al.1 that AI-generated patterns be considered as artifacts that provide insight into the societies and institutions that . . .</description><subject>Artificial Intelligence</subject><subject>Bias</subject><subject>Conflicts of interest</subject><subject>Health care</subject><subject>Health disparities</subject><subject>Humans</subject><subject>Minority & ethnic groups</subject><subject>Patient safety</subject><issn>0028-4793</issn><issn>1533-4406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0UtLw0AQB_BFFFurN88S8KJgdPa9OYZSNVL1ouew2exCSh51NxH89qa0injqXObyYx78ETrHcIuBi7uXxdOzIRRjTvgBmmJOacwYiEM0BSAqZjKhE3QSwgrGwiw5RhOqgCkCbIqus9Z1vtF99Wmj1PeV06YPUdVGaRanIVSht2U0196eoiOn62DPdn2G3u8Xb_PHePn6kM3TZWzGA_rYGCcoJcpKMZ4knTDOFVollJHSlBJUwRkUmktiBeVUEpAAQkqTcFY4BnSGrrZz1777GGzo86YKxta1bm03hJyoRFFMsBD7U7w35clIL__RVTf4dvx5ozgVBMNm981WGd-F4K3L175qtP_KMeSbYPK_wYz8Yjd0KBpb_uKfJOg3y9qDgA</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Azizi, Zahra</creator><creator>Vedelli, Jordan K H</creator><creator>Anand, Kanwaljeet J S</creator><general>Massachusetts Medical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0TZ</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K0Y</scope><scope>LK8</scope><scope>M0R</scope><scope>M0T</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20231130</creationdate><title>Informative Artifacts in AI-Assisted Care</title><author>Azizi, Zahra ; Vedelli, Jordan K H ; Anand, Kanwaljeet J S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-ccf63328e761157f6cffba89342dcd708b540ba572e6353720700677c954bf403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Bias</topic><topic>Conflicts of interest</topic><topic>Health care</topic><topic>Health disparities</topic><topic>Humans</topic><topic>Minority & ethnic groups</topic><topic>Patient safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azizi, Zahra</creatorcontrib><creatorcontrib>Vedelli, Jordan K H</creatorcontrib><creatorcontrib>Anand, Kanwaljeet J S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Pharma and Biotech Premium PRO</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>New England Journal of Medicine</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The New England journal of medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azizi, Zahra</au><au>Vedelli, Jordan K H</au><au>Anand, Kanwaljeet J S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Informative Artifacts in AI-Assisted Care</atitle><jtitle>The New England journal of medicine</jtitle><addtitle>N Engl J Med</addtitle><date>2023-11-30</date><risdate>2023</risdate><volume>389</volume><issue>22</issue><spage>2113</spage><epage>2115</epage><pages>2113-2115</pages><issn>0028-4793</issn><eissn>1533-4406</eissn><abstract>To the Editor: Ferryman et al. (Aug. 31 issue)1 acknowledge that the entire health care system suffers from the absence of data on race and ethnicity, particularly for underserved populations. Artificial intelligence (AI) applications that are trained on such health care data sets are inherently biased and likely to accentuate widening health inequities for underrepresented racial and ethnic groups.2,3 When algorithmic bias aligns with current manifestations of injustice, skewed AI tools will lead to greater inequity and discrimination.1-3 The proposal by Ferryman et al.1 that AI-generated patterns be considered as artifacts that provide insight into the societies and institutions that . . .</abstract><cop>United States</cop><pub>Massachusetts Medical Society</pub><pmid>38048204</pmid><doi>10.1056/NEJMc2311525</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-4793 |
ispartof | The New England journal of medicine, 2023-11, Vol.389 (22), p.2113-2115 |
issn | 0028-4793 1533-4406 |
language | eng |
recordid | cdi_proquest_miscellaneous_2898312166 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; New England Journal of Medicine |
subjects | Artificial Intelligence Bias Conflicts of interest Health care Health disparities Humans Minority & ethnic groups Patient safety |
title | Informative Artifacts in AI-Assisted Care |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Informative%20Artifacts%20in%20AI-Assisted%20Care&rft.jtitle=The%20New%20England%20journal%20of%20medicine&rft.au=Azizi,%20Zahra&rft.date=2023-11-30&rft.volume=389&rft.issue=22&rft.spage=2113&rft.epage=2115&rft.pages=2113-2115&rft.issn=0028-4793&rft.eissn=1533-4406&rft_id=info:doi/10.1056/NEJMc2311525&rft_dat=%3Cproquest_cross%3E2898312161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895362106&rft_id=info:pmid/38048204&rfr_iscdi=true |