A stochastic differential equation model for predator-avoidance fish schooling

This paper presents a mathematical model based on stochastic differential equations (SDEs) to depict the dynamics of a predator-prey system in an aquatic environment characterized by schooling behavior among the prey. The model employs a particle-like approach, incorporating attractive and repulsive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2024-01, Vol.367, p.109112-109112, Article 109112
Hauptverfasser: Hartono, Aditya Dewanto, Nguyen, Linh Thi Hoai, Tạ, Tôn Việt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109112
container_issue
container_start_page 109112
container_title Mathematical biosciences
container_volume 367
creator Hartono, Aditya Dewanto
Nguyen, Linh Thi Hoai
Tạ, Tôn Việt
description This paper presents a mathematical model based on stochastic differential equations (SDEs) to depict the dynamics of a predator-prey system in an aquatic environment characterized by schooling behavior among the prey. The model employs a particle-like approach, incorporating attractive and repulsive forces, akin to phenomena observed in molecular physics, to capture the interactions among the constituent units. Two hunting tactics of the predator, center-attacking and nearest-attacking strategies, are integrated into the model. Numerical simulations of this model unveil four distinct predator-avoidance patterns exhibited by schooling prey: Split and Reunion, Split and Separate into Two Groups, Scattered, and Maintain Formation and Distance. Our results also confirm the effectiveness of large groups of schooling prey in mitigating predation risk, consistent with real-life observations in natural aquatic ecosystems. These findings validate the accuracy and applicability of our model.
doi_str_mv 10.1016/j.mbs.2023.109112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2897489261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897489261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-ca79f729c7f4f2ac44a4f3f1698b13ac8d21049e62f9f6c8be8461bd8e6bded3</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWALgWgp_AAWlJElxdd2HHusKl5SBUt3y_GDukri1k6Q-Pe0amG6utI5Z_gQugc8Bwz8aTvvmjwnmNDDLwHIBZqCqGVJgbJLNMWYVGVVcTZBNzlvMYYagF-jCRWYUY6rKfpYFHmIZqPzEExhg_cuuX4Iui3cftRDiH3RRevawsdU7JKzeoip1N8xWN0bV_iQN0U2mxjb0H_doiuv2-zuzneG1i_P6-Vbufp8fV8uVqWhQgyl0bX0NZGm9swTbRjTzFMPXIoGqDbCEsBMOk689NyIxgnGobHC8cY6S2fo8TS7S3E_ujyoLmTj2lb3Lo5ZESFrJiThcIjCKWpSzDk5r3YpdDr9KMDqqKi26qCojorqpHjoPJznx6Zz9r_xx0Z_AdQlb9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897489261</pqid></control><display><type>article</type><title>A stochastic differential equation model for predator-avoidance fish schooling</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hartono, Aditya Dewanto ; Nguyen, Linh Thi Hoai ; Tạ, Tôn Việt</creator><creatorcontrib>Hartono, Aditya Dewanto ; Nguyen, Linh Thi Hoai ; Tạ, Tôn Việt</creatorcontrib><description>This paper presents a mathematical model based on stochastic differential equations (SDEs) to depict the dynamics of a predator-prey system in an aquatic environment characterized by schooling behavior among the prey. The model employs a particle-like approach, incorporating attractive and repulsive forces, akin to phenomena observed in molecular physics, to capture the interactions among the constituent units. Two hunting tactics of the predator, center-attacking and nearest-attacking strategies, are integrated into the model. Numerical simulations of this model unveil four distinct predator-avoidance patterns exhibited by schooling prey: Split and Reunion, Split and Separate into Two Groups, Scattered, and Maintain Formation and Distance. Our results also confirm the effectiveness of large groups of schooling prey in mitigating predation risk, consistent with real-life observations in natural aquatic ecosystems. These findings validate the accuracy and applicability of our model.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2023.109112</identifier><identifier>PMID: 38043605</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Ecosystem ; Fishes ; Food Chain ; Models, Biological ; Population Dynamics ; Predatory Behavior</subject><ispartof>Mathematical biosciences, 2024-01, Vol.367, p.109112-109112, Article 109112</ispartof><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-ca79f729c7f4f2ac44a4f3f1698b13ac8d21049e62f9f6c8be8461bd8e6bded3</citedby><cites>FETCH-LOGICAL-c388t-ca79f729c7f4f2ac44a4f3f1698b13ac8d21049e62f9f6c8be8461bd8e6bded3</cites><orcidid>0000-0002-3420-2589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38043605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartono, Aditya Dewanto</creatorcontrib><creatorcontrib>Nguyen, Linh Thi Hoai</creatorcontrib><creatorcontrib>Tạ, Tôn Việt</creatorcontrib><title>A stochastic differential equation model for predator-avoidance fish schooling</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>This paper presents a mathematical model based on stochastic differential equations (SDEs) to depict the dynamics of a predator-prey system in an aquatic environment characterized by schooling behavior among the prey. The model employs a particle-like approach, incorporating attractive and repulsive forces, akin to phenomena observed in molecular physics, to capture the interactions among the constituent units. Two hunting tactics of the predator, center-attacking and nearest-attacking strategies, are integrated into the model. Numerical simulations of this model unveil four distinct predator-avoidance patterns exhibited by schooling prey: Split and Reunion, Split and Separate into Two Groups, Scattered, and Maintain Formation and Distance. Our results also confirm the effectiveness of large groups of schooling prey in mitigating predation risk, consistent with real-life observations in natural aquatic ecosystems. These findings validate the accuracy and applicability of our model.</description><subject>Animals</subject><subject>Ecosystem</subject><subject>Fishes</subject><subject>Food Chain</subject><subject>Models, Biological</subject><subject>Population Dynamics</subject><subject>Predatory Behavior</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90DtPwzAUBWALgWgp_AAWlJElxdd2HHusKl5SBUt3y_GDukri1k6Q-Pe0amG6utI5Z_gQugc8Bwz8aTvvmjwnmNDDLwHIBZqCqGVJgbJLNMWYVGVVcTZBNzlvMYYagF-jCRWYUY6rKfpYFHmIZqPzEExhg_cuuX4Iui3cftRDiH3RRevawsdU7JKzeoip1N8xWN0bV_iQN0U2mxjb0H_doiuv2-zuzneG1i_P6-Vbufp8fV8uVqWhQgyl0bX0NZGm9swTbRjTzFMPXIoGqDbCEsBMOk689NyIxgnGobHC8cY6S2fo8TS7S3E_ujyoLmTj2lb3Lo5ZESFrJiThcIjCKWpSzDk5r3YpdDr9KMDqqKi26qCojorqpHjoPJznx6Zz9r_xx0Z_AdQlb9M</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Hartono, Aditya Dewanto</creator><creator>Nguyen, Linh Thi Hoai</creator><creator>Tạ, Tôn Việt</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3420-2589</orcidid></search><sort><creationdate>202401</creationdate><title>A stochastic differential equation model for predator-avoidance fish schooling</title><author>Hartono, Aditya Dewanto ; Nguyen, Linh Thi Hoai ; Tạ, Tôn Việt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-ca79f729c7f4f2ac44a4f3f1698b13ac8d21049e62f9f6c8be8461bd8e6bded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Ecosystem</topic><topic>Fishes</topic><topic>Food Chain</topic><topic>Models, Biological</topic><topic>Population Dynamics</topic><topic>Predatory Behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartono, Aditya Dewanto</creatorcontrib><creatorcontrib>Nguyen, Linh Thi Hoai</creatorcontrib><creatorcontrib>Tạ, Tôn Việt</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartono, Aditya Dewanto</au><au>Nguyen, Linh Thi Hoai</au><au>Tạ, Tôn Việt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stochastic differential equation model for predator-avoidance fish schooling</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2024-01</date><risdate>2024</risdate><volume>367</volume><spage>109112</spage><epage>109112</epage><pages>109112-109112</pages><artnum>109112</artnum><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>This paper presents a mathematical model based on stochastic differential equations (SDEs) to depict the dynamics of a predator-prey system in an aquatic environment characterized by schooling behavior among the prey. The model employs a particle-like approach, incorporating attractive and repulsive forces, akin to phenomena observed in molecular physics, to capture the interactions among the constituent units. Two hunting tactics of the predator, center-attacking and nearest-attacking strategies, are integrated into the model. Numerical simulations of this model unveil four distinct predator-avoidance patterns exhibited by schooling prey: Split and Reunion, Split and Separate into Two Groups, Scattered, and Maintain Formation and Distance. Our results also confirm the effectiveness of large groups of schooling prey in mitigating predation risk, consistent with real-life observations in natural aquatic ecosystems. These findings validate the accuracy and applicability of our model.</abstract><cop>United States</cop><pmid>38043605</pmid><doi>10.1016/j.mbs.2023.109112</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3420-2589</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2024-01, Vol.367, p.109112-109112, Article 109112
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_2897489261
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Ecosystem
Fishes
Food Chain
Models, Biological
Population Dynamics
Predatory Behavior
title A stochastic differential equation model for predator-avoidance fish schooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stochastic%20differential%20equation%20model%20for%20predator-avoidance%20fish%20schooling&rft.jtitle=Mathematical%20biosciences&rft.au=Hartono,%20Aditya%20Dewanto&rft.date=2024-01&rft.volume=367&rft.spage=109112&rft.epage=109112&rft.pages=109112-109112&rft.artnum=109112&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2023.109112&rft_dat=%3Cproquest_cross%3E2897489261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897489261&rft_id=info:pmid/38043605&rfr_iscdi=true