Identification of sudden cardiac death from human blood using ATR-FTIR spectroscopy and machine learning

Objective The aim of this study is to identify a rapid, sensitive, and non-destructive auxiliary approach for postmortem diagnosis of SCD, addressing the challenges faced in forensic practice. Methods ATR-FTIR spectroscopy was employed to collect spectral features of blood samples from different cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of legal medicine 2024-05, Vol.138 (3), p.1139-1148
Hauptverfasser: Zhang, Xiangyan, Xiao, Jiao, Yang, Fengqin, Qu, Hongke, Ye, Chengxin, Chen, Sile, Guo, Yadong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1148
container_issue 3
container_start_page 1139
container_title International journal of legal medicine
container_volume 138
creator Zhang, Xiangyan
Xiao, Jiao
Yang, Fengqin
Qu, Hongke
Ye, Chengxin
Chen, Sile
Guo, Yadong
description Objective The aim of this study is to identify a rapid, sensitive, and non-destructive auxiliary approach for postmortem diagnosis of SCD, addressing the challenges faced in forensic practice. Methods ATR-FTIR spectroscopy was employed to collect spectral features of blood samples from different cases, combined with pathological changes. Mixed datasets were analyzed using ANN, KNN, RF, and SVM algorithms. Evaluation metrics such as accuracy, precision, recall, F1-score and confusion matrix were used to select the optimal algorithm and construct the postmortem diagnosis model for SCD. Results A total of 77 cases were collected, including 43 cases in the SCD group and 34 cases in the non-SCD group. A total of 693 spectrogram were obtained. Compared to other algorithms, the SVM algorithm demonstrated the highest accuracy, reaching 95.83% based on spectral biomarkers. Furthermore, by combing spectral biomarkers with age, gender, and cardiac histopathological changes, the accuracy of the SVM model could get 100%. Conclusion Integrating artificial intelligence technology, pathology, and physical chemistry analysis of blood components can serve as an effective auxiliary method for postmortem diagnosis of SCD.
doi_str_mv 10.1007/s00414-023-03118-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2897486150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034841258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-bb06f30be6114d72192714143adb1a3723525f1ca30c41f28185dd97f302da8c3</originalsourceid><addsrcrecordid>eNp9kUFv3CAQhVHVqNkk_QM9VEi99OJmBrDBxyjKNitFqhRtzggDzjqyYQv2If8-pLttpRxyAjHfezPDI-QLwg8EkJcZQKCogPEKOKKq5AeyQsFlhXXbfCQraMu9VUyekrOcnwBQNrL-RE65AiFbJldkt3E-zEM_WDMPMdDY07y48katSW4wljpv5h3tU5zobplMoN0Yo6NLHsIjvdreV-vt5p7mvbdzitnG_TM1wdHJ2N0QPB29SaGgF-SkN2P2n4_nOXlY32yvb6u7Xz8311d3leWsmauug6bn0PkGUTjJsEyJZUtuXIeGS8ZrVvdoDQcrsGcKVe1cK4uGOaMsPyffD777FH8vPs96GrL142iCj0vWTLVSqAZrKOi3N-hTXFIo02kOXCiBrFaFYgfKlvVy8r3ep2Ey6Vkj6Ncc9CEHXXLQf3LQsoi-Hq2XbvLun-TvxxeAH4BcSuHRp_-937F9AXqzkdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034841258</pqid></control><display><type>article</type><title>Identification of sudden cardiac death from human blood using ATR-FTIR spectroscopy and machine learning</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Xiangyan ; Xiao, Jiao ; Yang, Fengqin ; Qu, Hongke ; Ye, Chengxin ; Chen, Sile ; Guo, Yadong</creator><creatorcontrib>Zhang, Xiangyan ; Xiao, Jiao ; Yang, Fengqin ; Qu, Hongke ; Ye, Chengxin ; Chen, Sile ; Guo, Yadong</creatorcontrib><description>Objective The aim of this study is to identify a rapid, sensitive, and non-destructive auxiliary approach for postmortem diagnosis of SCD, addressing the challenges faced in forensic practice. Methods ATR-FTIR spectroscopy was employed to collect spectral features of blood samples from different cases, combined with pathological changes. Mixed datasets were analyzed using ANN, KNN, RF, and SVM algorithms. Evaluation metrics such as accuracy, precision, recall, F1-score and confusion matrix were used to select the optimal algorithm and construct the postmortem diagnosis model for SCD. Results A total of 77 cases were collected, including 43 cases in the SCD group and 34 cases in the non-SCD group. A total of 693 spectrogram were obtained. Compared to other algorithms, the SVM algorithm demonstrated the highest accuracy, reaching 95.83% based on spectral biomarkers. Furthermore, by combing spectral biomarkers with age, gender, and cardiac histopathological changes, the accuracy of the SVM model could get 100%. Conclusion Integrating artificial intelligence technology, pathology, and physical chemistry analysis of blood components can serve as an effective auxiliary method for postmortem diagnosis of SCD.</description><identifier>ISSN: 0937-9827</identifier><identifier>EISSN: 1437-1596</identifier><identifier>DOI: 10.1007/s00414-023-03118-7</identifier><identifier>PMID: 38047927</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Ataxia Telangiectasia Mutated Proteins ; Biomarkers ; Blood ; Death, Sudden, Cardiac ; Diagnosis ; Forensic chemistry ; Forensic Medicine ; Forensic pathology ; Fourier transforms ; Humans ; Infrared spectroscopy ; Machine Learning ; Medical Law ; Medicine ; Medicine &amp; Public Health ; Original Article ; Physical chemistry ; Spectroscopy, Fourier Transform Infrared - methods ; Support vector machines</subject><ispartof>International journal of legal medicine, 2024-05, Vol.138 (3), p.1139-1148</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-bb06f30be6114d72192714143adb1a3723525f1ca30c41f28185dd97f302da8c3</cites><orcidid>0000-0001-7468-8061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00414-023-03118-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00414-023-03118-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38047927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiangyan</creatorcontrib><creatorcontrib>Xiao, Jiao</creatorcontrib><creatorcontrib>Yang, Fengqin</creatorcontrib><creatorcontrib>Qu, Hongke</creatorcontrib><creatorcontrib>Ye, Chengxin</creatorcontrib><creatorcontrib>Chen, Sile</creatorcontrib><creatorcontrib>Guo, Yadong</creatorcontrib><title>Identification of sudden cardiac death from human blood using ATR-FTIR spectroscopy and machine learning</title><title>International journal of legal medicine</title><addtitle>Int J Legal Med</addtitle><addtitle>Int J Legal Med</addtitle><description>Objective The aim of this study is to identify a rapid, sensitive, and non-destructive auxiliary approach for postmortem diagnosis of SCD, addressing the challenges faced in forensic practice. Methods ATR-FTIR spectroscopy was employed to collect spectral features of blood samples from different cases, combined with pathological changes. Mixed datasets were analyzed using ANN, KNN, RF, and SVM algorithms. Evaluation metrics such as accuracy, precision, recall, F1-score and confusion matrix were used to select the optimal algorithm and construct the postmortem diagnosis model for SCD. Results A total of 77 cases were collected, including 43 cases in the SCD group and 34 cases in the non-SCD group. A total of 693 spectrogram were obtained. Compared to other algorithms, the SVM algorithm demonstrated the highest accuracy, reaching 95.83% based on spectral biomarkers. Furthermore, by combing spectral biomarkers with age, gender, and cardiac histopathological changes, the accuracy of the SVM model could get 100%. Conclusion Integrating artificial intelligence technology, pathology, and physical chemistry analysis of blood components can serve as an effective auxiliary method for postmortem diagnosis of SCD.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Death, Sudden, Cardiac</subject><subject>Diagnosis</subject><subject>Forensic chemistry</subject><subject>Forensic Medicine</subject><subject>Forensic pathology</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Infrared spectroscopy</subject><subject>Machine Learning</subject><subject>Medical Law</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Original Article</subject><subject>Physical chemistry</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><subject>Support vector machines</subject><issn>0937-9827</issn><issn>1437-1596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv3CAQhVHVqNkk_QM9VEi99OJmBrDBxyjKNitFqhRtzggDzjqyYQv2If8-pLttpRxyAjHfezPDI-QLwg8EkJcZQKCogPEKOKKq5AeyQsFlhXXbfCQraMu9VUyekrOcnwBQNrL-RE65AiFbJldkt3E-zEM_WDMPMdDY07y48katSW4wljpv5h3tU5zobplMoN0Yo6NLHsIjvdreV-vt5p7mvbdzitnG_TM1wdHJ2N0QPB29SaGgF-SkN2P2n4_nOXlY32yvb6u7Xz8311d3leWsmauug6bn0PkGUTjJsEyJZUtuXIeGS8ZrVvdoDQcrsGcKVe1cK4uGOaMsPyffD777FH8vPs96GrL142iCj0vWTLVSqAZrKOi3N-hTXFIo02kOXCiBrFaFYgfKlvVy8r3ep2Ey6Vkj6Ncc9CEHXXLQf3LQsoi-Hq2XbvLun-TvxxeAH4BcSuHRp_-937F9AXqzkdg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhang, Xiangyan</creator><creator>Xiao, Jiao</creator><creator>Yang, Fengqin</creator><creator>Qu, Hongke</creator><creator>Ye, Chengxin</creator><creator>Chen, Sile</creator><creator>Guo, Yadong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7468-8061</orcidid></search><sort><creationdate>20240501</creationdate><title>Identification of sudden cardiac death from human blood using ATR-FTIR spectroscopy and machine learning</title><author>Zhang, Xiangyan ; Xiao, Jiao ; Yang, Fengqin ; Qu, Hongke ; Ye, Chengxin ; Chen, Sile ; Guo, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-bb06f30be6114d72192714143adb1a3723525f1ca30c41f28185dd97f302da8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Death, Sudden, Cardiac</topic><topic>Diagnosis</topic><topic>Forensic chemistry</topic><topic>Forensic Medicine</topic><topic>Forensic pathology</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Infrared spectroscopy</topic><topic>Machine Learning</topic><topic>Medical Law</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Original Article</topic><topic>Physical chemistry</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangyan</creatorcontrib><creatorcontrib>Xiao, Jiao</creatorcontrib><creatorcontrib>Yang, Fengqin</creatorcontrib><creatorcontrib>Qu, Hongke</creatorcontrib><creatorcontrib>Ye, Chengxin</creatorcontrib><creatorcontrib>Chen, Sile</creatorcontrib><creatorcontrib>Guo, Yadong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of legal medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiangyan</au><au>Xiao, Jiao</au><au>Yang, Fengqin</au><au>Qu, Hongke</au><au>Ye, Chengxin</au><au>Chen, Sile</au><au>Guo, Yadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of sudden cardiac death from human blood using ATR-FTIR spectroscopy and machine learning</atitle><jtitle>International journal of legal medicine</jtitle><stitle>Int J Legal Med</stitle><addtitle>Int J Legal Med</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>138</volume><issue>3</issue><spage>1139</spage><epage>1148</epage><pages>1139-1148</pages><issn>0937-9827</issn><eissn>1437-1596</eissn><abstract>Objective The aim of this study is to identify a rapid, sensitive, and non-destructive auxiliary approach for postmortem diagnosis of SCD, addressing the challenges faced in forensic practice. Methods ATR-FTIR spectroscopy was employed to collect spectral features of blood samples from different cases, combined with pathological changes. Mixed datasets were analyzed using ANN, KNN, RF, and SVM algorithms. Evaluation metrics such as accuracy, precision, recall, F1-score and confusion matrix were used to select the optimal algorithm and construct the postmortem diagnosis model for SCD. Results A total of 77 cases were collected, including 43 cases in the SCD group and 34 cases in the non-SCD group. A total of 693 spectrogram were obtained. Compared to other algorithms, the SVM algorithm demonstrated the highest accuracy, reaching 95.83% based on spectral biomarkers. Furthermore, by combing spectral biomarkers with age, gender, and cardiac histopathological changes, the accuracy of the SVM model could get 100%. Conclusion Integrating artificial intelligence technology, pathology, and physical chemistry analysis of blood components can serve as an effective auxiliary method for postmortem diagnosis of SCD.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38047927</pmid><doi>10.1007/s00414-023-03118-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7468-8061</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0937-9827
ispartof International journal of legal medicine, 2024-05, Vol.138 (3), p.1139-1148
issn 0937-9827
1437-1596
language eng
recordid cdi_proquest_miscellaneous_2897486150
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Accuracy
Algorithms
Artificial Intelligence
Ataxia Telangiectasia Mutated Proteins
Biomarkers
Blood
Death, Sudden, Cardiac
Diagnosis
Forensic chemistry
Forensic Medicine
Forensic pathology
Fourier transforms
Humans
Infrared spectroscopy
Machine Learning
Medical Law
Medicine
Medicine & Public Health
Original Article
Physical chemistry
Spectroscopy, Fourier Transform Infrared - methods
Support vector machines
title Identification of sudden cardiac death from human blood using ATR-FTIR spectroscopy and machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20sudden%20cardiac%20death%20from%20human%20blood%20using%20ATR-FTIR%20spectroscopy%20and%20machine%20learning&rft.jtitle=International%20journal%20of%20legal%20medicine&rft.au=Zhang,%20Xiangyan&rft.date=2024-05-01&rft.volume=138&rft.issue=3&rft.spage=1139&rft.epage=1148&rft.pages=1139-1148&rft.issn=0937-9827&rft.eissn=1437-1596&rft_id=info:doi/10.1007/s00414-023-03118-7&rft_dat=%3Cproquest_cross%3E3034841258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034841258&rft_id=info:pmid/38047927&rfr_iscdi=true