Nonlinear statistical retrievals of ice content and rain rate from passive microwave observations of a simulated convective storm

A numerical simulator for analysis of multispectral passive microwave mapping and retrieval is described. This simulator allows evaluation and optimization of satellite-based cloud and precipitation parameter retrieval algorithms. It contains three major components: the forward radiative transfer mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 1995-07, Vol.33 (4), p.957-970
Hauptverfasser: Skofronick-Jackson, G.M., Gasiewski, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 970
container_issue 4
container_start_page 957
container_title IEEE transactions on geoscience and remote sensing
container_volume 33
creator Skofronick-Jackson, G.M.
Gasiewski, A.J.
description A numerical simulator for analysis of multispectral passive microwave mapping and retrieval is described. This simulator allows evaluation and optimization of satellite-based cloud and precipitation parameter retrieval algorithms. It contains three major components: the forward radiative transfer model, the sensor observation model, and the parameter retrieval algorithm. Simulated spaceborne observations of an oceanic tropical squall sampled at five stages in time are demonstrated for a simplified version of the proposed Earth Observation System (EOS) Multifrequency Imaging Microwave Radiometer (MIMR). The simulator uses a nonlinear statistical retrieval algorithm consisting of a Karhunen-Loeve (KL) transform, a projection operator, a nonlinear inverse mapping and a linear minimum mean-square error estimator. Retrievals of rain rate and integrated ice content are performed for each evolutionary frame at both full spatial resolution (1.5 km) and the degraded spatial resolution of a MIMR-class system. Results are presented for both KL-based and brightness temperature-based retrieval algorithms. It is found that the KL-based algorithm has a reduced complexity and performs better than the brightness temperature-based algorithm for degraded resolution imagery, especially for rain rate retrievals. In addition, rain rate retrievals are more affected by low image resolution than are integrated ice content retrievals. Retrieval accuracy of both rain and integrated ice is also found to depend on the evolutionary stage of the storm.< >
doi_str_mv 10.1109/36.406682
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28971484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>406682</ieee_id><sourcerecordid>190295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-666361c7268737d81e6d38e4956086de5f54911ea0afdbb0e5b5aa8c72498bc03</originalsourceid><addsrcrecordid>eNqNksFrHCEUh6W00G3SQ689eQiBHibRUZ_OsYQ0CYTk0p4Hx3kDlhndqLslx_zndbNLrpuLCu_7fQ-ej5BvnF1wzrpLAReSAZj2A1lxpUzDQMqPZMV4B01ruvYz-ZLzX8a4VFyvyMtDDLMPaBPNxRafi3d2pglL8ri1c6Zxot4hdTEUDIXaMNJkfahHQTqluNC1zdlvkS7epfjP1lccMqZt1cXwKrA0-2Uz18S4E23RlV0gl5iWU_Jpqn3w6-E-IX9-Xf--um3uH2_urn7eN04KVhoAEMCdbsFooUfDEUZhUHYKmIER1aRkxzlaZqdxGBiqQVlrakB2ZnBMnJDzvXed4tMGc-kXnx3Osw0YN7mvw9FcGvkOULZMaXEc1BKENMdbc8M1V3DcyKGTQmhdwR97sE4854RTv05-sem556zfLUIvoN8vQmXPDlKb699OyQbn81tAgDRG7Xp_32MeEd-qB8d_07m7zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16943377</pqid></control><display><type>article</type><title>Nonlinear statistical retrievals of ice content and rain rate from passive microwave observations of a simulated convective storm</title><source>IEEE Electronic Library (IEL)</source><creator>Skofronick-Jackson, G.M. ; Gasiewski, A.J.</creator><creatorcontrib>Skofronick-Jackson, G.M. ; Gasiewski, A.J.</creatorcontrib><description>A numerical simulator for analysis of multispectral passive microwave mapping and retrieval is described. This simulator allows evaluation and optimization of satellite-based cloud and precipitation parameter retrieval algorithms. It contains three major components: the forward radiative transfer model, the sensor observation model, and the parameter retrieval algorithm. Simulated spaceborne observations of an oceanic tropical squall sampled at five stages in time are demonstrated for a simplified version of the proposed Earth Observation System (EOS) Multifrequency Imaging Microwave Radiometer (MIMR). The simulator uses a nonlinear statistical retrieval algorithm consisting of a Karhunen-Loeve (KL) transform, a projection operator, a nonlinear inverse mapping and a linear minimum mean-square error estimator. Retrievals of rain rate and integrated ice content are performed for each evolutionary frame at both full spatial resolution (1.5 km) and the degraded spatial resolution of a MIMR-class system. Results are presented for both KL-based and brightness temperature-based retrieval algorithms. It is found that the KL-based algorithm has a reduced complexity and performs better than the brightness temperature-based algorithm for degraded resolution imagery, especially for rain rate retrievals. In addition, rain rate retrievals are more affected by low image resolution than are integrated ice content retrievals. Retrieval accuracy of both rain and integrated ice is also found to depend on the evolutionary stage of the storm.&lt; &gt;</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.406682</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analytical models ; Brightness ; Content based retrieval ; Degradation ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Ice ; Image resolution ; Image retrieval ; Mathematical models ; Numerical simulation ; Q1 ; Rain ; Satellites ; Spatial resolution</subject><ispartof>IEEE transactions on geoscience and remote sensing, 1995-07, Vol.33 (4), p.957-970</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-666361c7268737d81e6d38e4956086de5f54911ea0afdbb0e5b5aa8c72498bc03</citedby><cites>FETCH-LOGICAL-c430t-666361c7268737d81e6d38e4956086de5f54911ea0afdbb0e5b5aa8c72498bc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/406682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/406682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3648853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skofronick-Jackson, G.M.</creatorcontrib><creatorcontrib>Gasiewski, A.J.</creatorcontrib><title>Nonlinear statistical retrievals of ice content and rain rate from passive microwave observations of a simulated convective storm</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A numerical simulator for analysis of multispectral passive microwave mapping and retrieval is described. This simulator allows evaluation and optimization of satellite-based cloud and precipitation parameter retrieval algorithms. It contains three major components: the forward radiative transfer model, the sensor observation model, and the parameter retrieval algorithm. Simulated spaceborne observations of an oceanic tropical squall sampled at five stages in time are demonstrated for a simplified version of the proposed Earth Observation System (EOS) Multifrequency Imaging Microwave Radiometer (MIMR). The simulator uses a nonlinear statistical retrieval algorithm consisting of a Karhunen-Loeve (KL) transform, a projection operator, a nonlinear inverse mapping and a linear minimum mean-square error estimator. Retrievals of rain rate and integrated ice content are performed for each evolutionary frame at both full spatial resolution (1.5 km) and the degraded spatial resolution of a MIMR-class system. Results are presented for both KL-based and brightness temperature-based retrieval algorithms. It is found that the KL-based algorithm has a reduced complexity and performs better than the brightness temperature-based algorithm for degraded resolution imagery, especially for rain rate retrievals. In addition, rain rate retrievals are more affected by low image resolution than are integrated ice content retrievals. Retrieval accuracy of both rain and integrated ice is also found to depend on the evolutionary stage of the storm.&lt; &gt;</description><subject>Analytical models</subject><subject>Brightness</subject><subject>Content based retrieval</subject><subject>Degradation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Ice</subject><subject>Image resolution</subject><subject>Image retrieval</subject><subject>Mathematical models</subject><subject>Numerical simulation</subject><subject>Q1</subject><subject>Rain</subject><subject>Satellites</subject><subject>Spatial resolution</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNksFrHCEUh6W00G3SQ689eQiBHibRUZ_OsYQ0CYTk0p4Hx3kDlhndqLslx_zndbNLrpuLCu_7fQ-ej5BvnF1wzrpLAReSAZj2A1lxpUzDQMqPZMV4B01ruvYz-ZLzX8a4VFyvyMtDDLMPaBPNxRafi3d2pglL8ri1c6Zxot4hdTEUDIXaMNJkfahHQTqluNC1zdlvkS7epfjP1lccMqZt1cXwKrA0-2Uz18S4E23RlV0gl5iWU_Jpqn3w6-E-IX9-Xf--um3uH2_urn7eN04KVhoAEMCdbsFooUfDEUZhUHYKmIER1aRkxzlaZqdxGBiqQVlrakB2ZnBMnJDzvXed4tMGc-kXnx3Osw0YN7mvw9FcGvkOULZMaXEc1BKENMdbc8M1V3DcyKGTQmhdwR97sE4854RTv05-sem556zfLUIvoN8vQmXPDlKb699OyQbn81tAgDRG7Xp_32MeEd-qB8d_07m7zQ</recordid><startdate>19950701</startdate><enddate>19950701</enddate><creator>Skofronick-Jackson, G.M.</creator><creator>Gasiewski, A.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19950701</creationdate><title>Nonlinear statistical retrievals of ice content and rain rate from passive microwave observations of a simulated convective storm</title><author>Skofronick-Jackson, G.M. ; Gasiewski, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-666361c7268737d81e6d38e4956086de5f54911ea0afdbb0e5b5aa8c72498bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Analytical models</topic><topic>Brightness</topic><topic>Content based retrieval</topic><topic>Degradation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Ice</topic><topic>Image resolution</topic><topic>Image retrieval</topic><topic>Mathematical models</topic><topic>Numerical simulation</topic><topic>Q1</topic><topic>Rain</topic><topic>Satellites</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skofronick-Jackson, G.M.</creatorcontrib><creatorcontrib>Gasiewski, A.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skofronick-Jackson, G.M.</au><au>Gasiewski, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear statistical retrievals of ice content and rain rate from passive microwave observations of a simulated convective storm</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>1995-07-01</date><risdate>1995</risdate><volume>33</volume><issue>4</issue><spage>957</spage><epage>970</epage><pages>957-970</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A numerical simulator for analysis of multispectral passive microwave mapping and retrieval is described. This simulator allows evaluation and optimization of satellite-based cloud and precipitation parameter retrieval algorithms. It contains three major components: the forward radiative transfer model, the sensor observation model, and the parameter retrieval algorithm. Simulated spaceborne observations of an oceanic tropical squall sampled at five stages in time are demonstrated for a simplified version of the proposed Earth Observation System (EOS) Multifrequency Imaging Microwave Radiometer (MIMR). The simulator uses a nonlinear statistical retrieval algorithm consisting of a Karhunen-Loeve (KL) transform, a projection operator, a nonlinear inverse mapping and a linear minimum mean-square error estimator. Retrievals of rain rate and integrated ice content are performed for each evolutionary frame at both full spatial resolution (1.5 km) and the degraded spatial resolution of a MIMR-class system. Results are presented for both KL-based and brightness temperature-based retrieval algorithms. It is found that the KL-based algorithm has a reduced complexity and performs better than the brightness temperature-based algorithm for degraded resolution imagery, especially for rain rate retrievals. In addition, rain rate retrievals are more affected by low image resolution than are integrated ice content retrievals. Retrieval accuracy of both rain and integrated ice is also found to depend on the evolutionary stage of the storm.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.406682</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 1995-07, Vol.33 (4), p.957-970
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_28971484
source IEEE Electronic Library (IEL)
subjects Analytical models
Brightness
Content based retrieval
Degradation
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Ice
Image resolution
Image retrieval
Mathematical models
Numerical simulation
Q1
Rain
Satellites
Spatial resolution
title Nonlinear statistical retrievals of ice content and rain rate from passive microwave observations of a simulated convective storm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20statistical%20retrievals%20of%20ice%20content%20and%20rain%20rate%20from%20passive%20microwave%20observations%20of%20a%20simulated%20convective%20storm&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Skofronick-Jackson,%20G.M.&rft.date=1995-07-01&rft.volume=33&rft.issue=4&rft.spage=957&rft.epage=970&rft.pages=957-970&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.406682&rft_dat=%3Cproquest_RIE%3E190295%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16943377&rft_id=info:pmid/&rft_ieee_id=406682&rfr_iscdi=true