Influence of extracellular polymeric substances on arsenic bioaccumulation and biotransformation in biofilms
It is well recognized that biofilms can biosorb and biotransform heavy metals in aquatic environments. However, the effects of extracellular polymeric substance (EPS) on inorganic arsenic (As) bioaccumulation and biotransformation in biofilms are still unrevealed and need to be investigated. In orde...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2024-02, Vol.349, p.140798-140798, Article 140798 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well recognized that biofilms can biosorb and biotransform heavy metals in aquatic environments. However, the effects of extracellular polymeric substance (EPS) on inorganic arsenic (As) bioaccumulation and biotransformation in biofilms are still unrevealed and need to be investigated. In order to explore the above scientific issues, the As accumulation and speciation in EPS-containing or EPS-free biofilms and growth medium under As(V)/As(III) exposure conditions were measured. After the removal of EPS, the amount of As uptake (Asup) and As adsorption (Asad) in biofilms were significantly reduced, no matter whether exposed to As(V) or As(III). FTIR analysis further suggested that the interaction between these functional groups with As was limited after the removal of EPS. In the EPS-containing biofilms, the Asad was mainly As(V) with low toxicity. However, after the removal of EPS, the Asad was mainly As(III) with high fluidity, and no methylated As was found. Moreover, the removal of EPS inhibited As(III) oxidation and methylation by biofilms, resulting in the decrease of As(V) and methylated As in the growth medium. The findings of this study emphasized the essential impact of EPS on the biosorption and biotransformation of As in biofilms. This study provides a unique understanding of the role of biofilms in As biogeochemical cycle, and water quality purification function in water environments.
[Display omitted]
•EPS increased As uptake and adsorption by biofilms.•EPS enhanced As(III) oxidation and methylation in biofilms.•EPS removal changes the response mode of biofilm to As metabolism.•The proportion of arsenic speciation in biofilms is similar regardless As(III) or As(V) exposure. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2023.140798 |