LDCNet: Lightweight dynamic convolution network for laparoscopic procedures image segmentation

Medical image segmentation is fundamental for modern healthcare systems, especially for reducing the risk of surgery and treatment planning. Transanal total mesorectal excision (TaTME) has emerged as a recent focal point in laparoscopic research, representing a pivotal modality in the therapeutic ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-02, Vol.170, p.441-452
Hauptverfasser: Yin, Yiyang, Luo, Shuangling, Zhou, Jun, Kang, Liang, Chen, Calvin Yu-Chian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medical image segmentation is fundamental for modern healthcare systems, especially for reducing the risk of surgery and treatment planning. Transanal total mesorectal excision (TaTME) has emerged as a recent focal point in laparoscopic research, representing a pivotal modality in the therapeutic arsenal for the treatment of colon & rectum cancers. Real-time instance segmentation of surgical imagery during TaTME procedures can serve as an invaluable tool in assisting surgeons, ultimately reducing surgical risks. The dynamic variations in size and shape of anatomical structures within intraoperative images pose a formidable challenge, rendering the precise instance segmentation of TaTME images a task of considerable complexity. Deep learning has exhibited its efficacy in Medical image segmentation. However, existing models have encountered challenges in concurrently achieving a satisfactory level of accuracy while maintaining manageable computational complexity in the context of TaTME data. To address this conundrum, we propose a lightweight dynamic convolution Network (LDCNet) that has the same superior segmentation performance as the state-of-the-art (SOTA) medical image segmentation network while running at the speed of the lightweight convolutional neural network. Experimental results demonstrate the promising performance of LDCNet, which consistently exceeds previous SOTA approaches. Codes are available at github.com/yinyiyang416/LDCNet. •We propose LDCNet for TaTME surgical image segmentation.•We evaluate the effectiveness of LDCNet on both TaTME and Kvasir datasets.•The results show that the LDCNet outperforms other state-of-the-art models.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2023.11.055