Graphene electromagnetically induced transparent polarization-insensitive sensors in the mid-infrared frequency band
In this paper, a polarization-insensitive sensor based on graphene electromagnetically induced transparency (EIT) is proposed. The device consists of two graphene orthogonal T-shaped structures. This T-shaped resonator produces transparent windows that largely overlap under x and y polarizations, an...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2023-10, Vol.62 (30), p.8178-8183 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a polarization-insensitive sensor based on graphene electromagnetically induced transparency (EIT) is proposed. The device consists of two graphene orthogonal T-shaped structures. This T-shaped resonator produces transparent windows that largely overlap under x and y polarizations, and the results demonstrate its good polarization insensitivity. The device can accomplish detection performance with sensitivity higher than 4960 nm/RIU and figure of merit (FOM) greater than 11.4. Meanwhile, when the Fermi energy level of graphene changes from 0.5 to 0.8 eV, it enables arbitrary modulation of the operating frequency over a wide frequency range of about 4.5 terahertz in the mid-infrared band. Our work has the potential to significantly advance the area of biological molecular detection. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.501357 |