Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators
Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging....
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-04, Vol.20 (16), p.e2306018-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | e2306018 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Liu, Ting‐Ran Fung, Man Yui Thomas Yeh, Li‐Hsien Chiang, Chun‐Hao Yang, Jhih‐Sian Kuo, Pai‐Chia Shiue, Jessie Chen, Chia‐Chun Chen, Chun‐Wei |
description | Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single‐layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high‐performance ion‐gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis‐driven proton‐gradient power up to ≈3 nW under 1000‐fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid‐base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single‐layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions.
An atomically thin 2D hexagonal boron nitride (hBN) nanopore with an ultrahigh surface charge for highly efficient ionic gradient power harvesting is demonstrated. Benefiting from ultrafast ion transport and excellent cation selectivity, a single hBN nanopore reaches an unprecedented nanowatt level under various ionic gradients, more than ten times higher than all the state‐of‐the‐art single‐pore devices. |
doi_str_mv | 10.1002/smll.202306018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2896803764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896803764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-a9aee9439bd2b468e58b5f3f7ee4929fc31ac997f1217326337d980f9d794613</originalsourceid><addsrcrecordid>eNqFkbtuGzEQRYnAQezYaVMaBNykkcyXlmQZC7EkYP0ArJ6gdocyjV1SISXI6vwJ-cZ8SWjIUQA3qWaKcw8wcxH6SsmQEsIuc991Q0YYJxWh6gM6oRXlg0oxfXTYKTlGn3N-IoRTJuQndMwVEVQIfYLcgw_LDn6__KrtDhKewrNdxmA7fBVTDPjWr5NvAd_aEFcxQcY246lfPpbEPSQXU29DA3gWg2_wJNnWQ1jj-7gtsgkESHYdUz5DH53tMnx5m6dofv1jPp4O6rvJbPy9HjRccjWw2gJowfWiZQtRKRipxchxJwGEZto1nNpGa-koo5KzinPZakWcbqUW5dhT9G2vXaX4cwN5bXqfG-g6GyBusmFKV4pwWYmCXrxDn-ImlcOz4USUX0rBdKGGe6pJMecEzqyS723aGUrMawHmtQBzKKAEzt-0m0UP7QH_-_EC6D2w9R3s_qMzDzd1_U_-BwdAk6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040187429</pqid></control><display><type>article</type><title>Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Ting‐Ran ; Fung, Man Yui Thomas ; Yeh, Li‐Hsien ; Chiang, Chun‐Hao ; Yang, Jhih‐Sian ; Kuo, Pai‐Chia ; Shiue, Jessie ; Chen, Chia‐Chun ; Chen, Chun‐Wei</creator><creatorcontrib>Liu, Ting‐Ran ; Fung, Man Yui Thomas ; Yeh, Li‐Hsien ; Chiang, Chun‐Hao ; Yang, Jhih‐Sian ; Kuo, Pai‐Chia ; Shiue, Jessie ; Chen, Chia‐Chun ; Chen, Chun‐Wei</creatorcontrib><description>Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single‐layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high‐performance ion‐gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis‐driven proton‐gradient power up to ≈3 nW under 1000‐fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid‐base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single‐layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions.
An atomically thin 2D hexagonal boron nitride (hBN) nanopore with an ultrahigh surface charge for highly efficient ionic gradient power harvesting is demonstrated. Benefiting from ultrafast ion transport and excellent cation selectivity, a single hBN nanopore reaches an unprecedented nanowatt level under various ionic gradients, more than ten times higher than all the state‐of‐the‐art single‐pore devices.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202306018</identifier><identifier>PMID: 38041449</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Acid-base neutralization ; Atomic properties ; Boron nitride ; Energy harvesting ; Generators ; ion transport ; Membranes ; Osmosis ; osmotic power ; proton gradient power ; Protons ; singe‐layer nanopore ; Surface charge ; Synergistic effect ; Thickness ; Two dimensional materials</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (16), p.e2306018-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-a9aee9439bd2b468e58b5f3f7ee4929fc31ac997f1217326337d980f9d794613</citedby><cites>FETCH-LOGICAL-c3738-a9aee9439bd2b468e58b5f3f7ee4929fc31ac997f1217326337d980f9d794613</cites><orcidid>0000-0002-9066-4657 ; 0000-0003-3096-249X ; 0000-0003-2982-5340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202306018$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202306018$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38041449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ting‐Ran</creatorcontrib><creatorcontrib>Fung, Man Yui Thomas</creatorcontrib><creatorcontrib>Yeh, Li‐Hsien</creatorcontrib><creatorcontrib>Chiang, Chun‐Hao</creatorcontrib><creatorcontrib>Yang, Jhih‐Sian</creatorcontrib><creatorcontrib>Kuo, Pai‐Chia</creatorcontrib><creatorcontrib>Shiue, Jessie</creatorcontrib><creatorcontrib>Chen, Chia‐Chun</creatorcontrib><creatorcontrib>Chen, Chun‐Wei</creatorcontrib><title>Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single‐layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high‐performance ion‐gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis‐driven proton‐gradient power up to ≈3 nW under 1000‐fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid‐base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single‐layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions.
An atomically thin 2D hexagonal boron nitride (hBN) nanopore with an ultrahigh surface charge for highly efficient ionic gradient power harvesting is demonstrated. Benefiting from ultrafast ion transport and excellent cation selectivity, a single hBN nanopore reaches an unprecedented nanowatt level under various ionic gradients, more than ten times higher than all the state‐of‐the‐art single‐pore devices.</description><subject>2D materials</subject><subject>Acid-base neutralization</subject><subject>Atomic properties</subject><subject>Boron nitride</subject><subject>Energy harvesting</subject><subject>Generators</subject><subject>ion transport</subject><subject>Membranes</subject><subject>Osmosis</subject><subject>osmotic power</subject><subject>proton gradient power</subject><subject>Protons</subject><subject>singe‐layer nanopore</subject><subject>Surface charge</subject><subject>Synergistic effect</subject><subject>Thickness</subject><subject>Two dimensional materials</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtuGzEQRYnAQezYaVMaBNykkcyXlmQZC7EkYP0ArJ6gdocyjV1SISXI6vwJ-cZ8SWjIUQA3qWaKcw8wcxH6SsmQEsIuc991Q0YYJxWh6gM6oRXlg0oxfXTYKTlGn3N-IoRTJuQndMwVEVQIfYLcgw_LDn6__KrtDhKewrNdxmA7fBVTDPjWr5NvAd_aEFcxQcY246lfPpbEPSQXU29DA3gWg2_wJNnWQ1jj-7gtsgkESHYdUz5DH53tMnx5m6dofv1jPp4O6rvJbPy9HjRccjWw2gJowfWiZQtRKRipxchxJwGEZto1nNpGa-koo5KzinPZakWcbqUW5dhT9G2vXaX4cwN5bXqfG-g6GyBusmFKV4pwWYmCXrxDn-ImlcOz4USUX0rBdKGGe6pJMecEzqyS723aGUrMawHmtQBzKKAEzt-0m0UP7QH_-_EC6D2w9R3s_qMzDzd1_U_-BwdAk6k</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Ting‐Ran</creator><creator>Fung, Man Yui Thomas</creator><creator>Yeh, Li‐Hsien</creator><creator>Chiang, Chun‐Hao</creator><creator>Yang, Jhih‐Sian</creator><creator>Kuo, Pai‐Chia</creator><creator>Shiue, Jessie</creator><creator>Chen, Chia‐Chun</creator><creator>Chen, Chun‐Wei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9066-4657</orcidid><orcidid>https://orcid.org/0000-0003-3096-249X</orcidid><orcidid>https://orcid.org/0000-0003-2982-5340</orcidid></search><sort><creationdate>20240401</creationdate><title>Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators</title><author>Liu, Ting‐Ran ; Fung, Man Yui Thomas ; Yeh, Li‐Hsien ; Chiang, Chun‐Hao ; Yang, Jhih‐Sian ; Kuo, Pai‐Chia ; Shiue, Jessie ; Chen, Chia‐Chun ; Chen, Chun‐Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-a9aee9439bd2b468e58b5f3f7ee4929fc31ac997f1217326337d980f9d794613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Acid-base neutralization</topic><topic>Atomic properties</topic><topic>Boron nitride</topic><topic>Energy harvesting</topic><topic>Generators</topic><topic>ion transport</topic><topic>Membranes</topic><topic>Osmosis</topic><topic>osmotic power</topic><topic>proton gradient power</topic><topic>Protons</topic><topic>singe‐layer nanopore</topic><topic>Surface charge</topic><topic>Synergistic effect</topic><topic>Thickness</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ting‐Ran</creatorcontrib><creatorcontrib>Fung, Man Yui Thomas</creatorcontrib><creatorcontrib>Yeh, Li‐Hsien</creatorcontrib><creatorcontrib>Chiang, Chun‐Hao</creatorcontrib><creatorcontrib>Yang, Jhih‐Sian</creatorcontrib><creatorcontrib>Kuo, Pai‐Chia</creatorcontrib><creatorcontrib>Shiue, Jessie</creatorcontrib><creatorcontrib>Chen, Chia‐Chun</creatorcontrib><creatorcontrib>Chen, Chun‐Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ting‐Ran</au><au>Fung, Man Yui Thomas</au><au>Yeh, Li‐Hsien</au><au>Chiang, Chun‐Hao</au><au>Yang, Jhih‐Sian</au><au>Kuo, Pai‐Chia</au><au>Shiue, Jessie</au><au>Chen, Chia‐Chun</au><au>Chen, Chun‐Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>20</volume><issue>16</issue><spage>e2306018</spage><epage>n/a</epage><pages>e2306018-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single‐layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high‐performance ion‐gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis‐driven proton‐gradient power up to ≈3 nW under 1000‐fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid‐base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single‐layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions.
An atomically thin 2D hexagonal boron nitride (hBN) nanopore with an ultrahigh surface charge for highly efficient ionic gradient power harvesting is demonstrated. Benefiting from ultrafast ion transport and excellent cation selectivity, a single hBN nanopore reaches an unprecedented nanowatt level under various ionic gradients, more than ten times higher than all the state‐of‐the‐art single‐pore devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38041449</pmid><doi>10.1002/smll.202306018</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9066-4657</orcidid><orcidid>https://orcid.org/0000-0003-3096-249X</orcidid><orcidid>https://orcid.org/0000-0003-2982-5340</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (16), p.e2306018-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2896803764 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2D materials Acid-base neutralization Atomic properties Boron nitride Energy harvesting Generators ion transport Membranes Osmosis osmotic power proton gradient power Protons singe‐layer nanopore Surface charge Synergistic effect Thickness Two dimensional materials |
title | Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Layer%20Hexagonal%20Boron%20Nitride%20Nanopores%20as%20High%E2%80%90Performance%20Ionic%20Gradient%20Power%20Generators&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Ting%E2%80%90Ran&rft.date=2024-04-01&rft.volume=20&rft.issue=16&rft.spage=e2306018&rft.epage=n/a&rft.pages=e2306018-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202306018&rft_dat=%3Cproquest_cross%3E2896803764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040187429&rft_id=info:pmid/38041449&rfr_iscdi=true |