Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators

Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-04, Vol.20 (16), p.e2306018-n/a
Hauptverfasser: Liu, Ting‐Ran, Fung, Man Yui Thomas, Yeh, Li‐Hsien, Chiang, Chun‐Hao, Yang, Jhih‐Sian, Kuo, Pai‐Chia, Shiue, Jessie, Chen, Chia‐Chun, Chen, Chun‐Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e2306018
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Liu, Ting‐Ran
Fung, Man Yui Thomas
Yeh, Li‐Hsien
Chiang, Chun‐Hao
Yang, Jhih‐Sian
Kuo, Pai‐Chia
Shiue, Jessie
Chen, Chia‐Chun
Chen, Chun‐Wei
description Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single‐layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high‐performance ion‐gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis‐driven proton‐gradient power up to ≈3 nW under 1000‐fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid‐base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single‐layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions. An atomically thin 2D hexagonal boron nitride (hBN) nanopore with an ultrahigh surface charge for highly efficient ionic gradient power harvesting is demonstrated. Benefiting from ultrafast ion transport and excellent cation selectivity, a single hBN nanopore reaches an unprecedented nanowatt level under various ionic gradients, more than ten times higher than all the state‐of‐the‐art single‐pore devices.
doi_str_mv 10.1002/smll.202306018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2896803764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896803764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-a9aee9439bd2b468e58b5f3f7ee4929fc31ac997f1217326337d980f9d794613</originalsourceid><addsrcrecordid>eNqFkbtuGzEQRYnAQezYaVMaBNykkcyXlmQZC7EkYP0ArJ6gdocyjV1SISXI6vwJ-cZ8SWjIUQA3qWaKcw8wcxH6SsmQEsIuc991Q0YYJxWh6gM6oRXlg0oxfXTYKTlGn3N-IoRTJuQndMwVEVQIfYLcgw_LDn6__KrtDhKewrNdxmA7fBVTDPjWr5NvAd_aEFcxQcY246lfPpbEPSQXU29DA3gWg2_wJNnWQ1jj-7gtsgkESHYdUz5DH53tMnx5m6dofv1jPp4O6rvJbPy9HjRccjWw2gJowfWiZQtRKRipxchxJwGEZto1nNpGa-koo5KzinPZakWcbqUW5dhT9G2vXaX4cwN5bXqfG-g6GyBusmFKV4pwWYmCXrxDn-ImlcOz4USUX0rBdKGGe6pJMecEzqyS723aGUrMawHmtQBzKKAEzt-0m0UP7QH_-_EC6D2w9R3s_qMzDzd1_U_-BwdAk6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040187429</pqid></control><display><type>article</type><title>Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Ting‐Ran ; Fung, Man Yui Thomas ; Yeh, Li‐Hsien ; Chiang, Chun‐Hao ; Yang, Jhih‐Sian ; Kuo, Pai‐Chia ; Shiue, Jessie ; Chen, Chia‐Chun ; Chen, Chun‐Wei</creator><creatorcontrib>Liu, Ting‐Ran ; Fung, Man Yui Thomas ; Yeh, Li‐Hsien ; Chiang, Chun‐Hao ; Yang, Jhih‐Sian ; Kuo, Pai‐Chia ; Shiue, Jessie ; Chen, Chia‐Chun ; Chen, Chun‐Wei</creatorcontrib><description>Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single‐layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high‐performance ion‐gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis‐driven proton‐gradient power up to ≈3 nW under 1000‐fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid‐base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single‐layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions. An atomically thin 2D hexagonal boron nitride (hBN) nanopore with an ultrahigh surface charge for highly efficient ionic gradient power harvesting is demonstrated. Benefiting from ultrafast ion transport and excellent cation selectivity, a single hBN nanopore reaches an unprecedented nanowatt level under various ionic gradients, more than ten times higher than all the state‐of‐the‐art single‐pore devices.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202306018</identifier><identifier>PMID: 38041449</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Acid-base neutralization ; Atomic properties ; Boron nitride ; Energy harvesting ; Generators ; ion transport ; Membranes ; Osmosis ; osmotic power ; proton gradient power ; Protons ; singe‐layer nanopore ; Surface charge ; Synergistic effect ; Thickness ; Two dimensional materials</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (16), p.e2306018-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-a9aee9439bd2b468e58b5f3f7ee4929fc31ac997f1217326337d980f9d794613</citedby><cites>FETCH-LOGICAL-c3738-a9aee9439bd2b468e58b5f3f7ee4929fc31ac997f1217326337d980f9d794613</cites><orcidid>0000-0002-9066-4657 ; 0000-0003-3096-249X ; 0000-0003-2982-5340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202306018$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202306018$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38041449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ting‐Ran</creatorcontrib><creatorcontrib>Fung, Man Yui Thomas</creatorcontrib><creatorcontrib>Yeh, Li‐Hsien</creatorcontrib><creatorcontrib>Chiang, Chun‐Hao</creatorcontrib><creatorcontrib>Yang, Jhih‐Sian</creatorcontrib><creatorcontrib>Kuo, Pai‐Chia</creatorcontrib><creatorcontrib>Shiue, Jessie</creatorcontrib><creatorcontrib>Chen, Chia‐Chun</creatorcontrib><creatorcontrib>Chen, Chun‐Wei</creatorcontrib><title>Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single‐layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high‐performance ion‐gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis‐driven proton‐gradient power up to ≈3 nW under 1000‐fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid‐base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single‐layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions. An atomically thin 2D hexagonal boron nitride (hBN) nanopore with an ultrahigh surface charge for highly efficient ionic gradient power harvesting is demonstrated. Benefiting from ultrafast ion transport and excellent cation selectivity, a single hBN nanopore reaches an unprecedented nanowatt level under various ionic gradients, more than ten times higher than all the state‐of‐the‐art single‐pore devices.</description><subject>2D materials</subject><subject>Acid-base neutralization</subject><subject>Atomic properties</subject><subject>Boron nitride</subject><subject>Energy harvesting</subject><subject>Generators</subject><subject>ion transport</subject><subject>Membranes</subject><subject>Osmosis</subject><subject>osmotic power</subject><subject>proton gradient power</subject><subject>Protons</subject><subject>singe‐layer nanopore</subject><subject>Surface charge</subject><subject>Synergistic effect</subject><subject>Thickness</subject><subject>Two dimensional materials</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtuGzEQRYnAQezYaVMaBNykkcyXlmQZC7EkYP0ArJ6gdocyjV1SISXI6vwJ-cZ8SWjIUQA3qWaKcw8wcxH6SsmQEsIuc991Q0YYJxWh6gM6oRXlg0oxfXTYKTlGn3N-IoRTJuQndMwVEVQIfYLcgw_LDn6__KrtDhKewrNdxmA7fBVTDPjWr5NvAd_aEFcxQcY246lfPpbEPSQXU29DA3gWg2_wJNnWQ1jj-7gtsgkESHYdUz5DH53tMnx5m6dofv1jPp4O6rvJbPy9HjRccjWw2gJowfWiZQtRKRipxchxJwGEZto1nNpGa-koo5KzinPZakWcbqUW5dhT9G2vXaX4cwN5bXqfG-g6GyBusmFKV4pwWYmCXrxDn-ImlcOz4USUX0rBdKGGe6pJMecEzqyS723aGUrMawHmtQBzKKAEzt-0m0UP7QH_-_EC6D2w9R3s_qMzDzd1_U_-BwdAk6k</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Ting‐Ran</creator><creator>Fung, Man Yui Thomas</creator><creator>Yeh, Li‐Hsien</creator><creator>Chiang, Chun‐Hao</creator><creator>Yang, Jhih‐Sian</creator><creator>Kuo, Pai‐Chia</creator><creator>Shiue, Jessie</creator><creator>Chen, Chia‐Chun</creator><creator>Chen, Chun‐Wei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9066-4657</orcidid><orcidid>https://orcid.org/0000-0003-3096-249X</orcidid><orcidid>https://orcid.org/0000-0003-2982-5340</orcidid></search><sort><creationdate>20240401</creationdate><title>Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators</title><author>Liu, Ting‐Ran ; Fung, Man Yui Thomas ; Yeh, Li‐Hsien ; Chiang, Chun‐Hao ; Yang, Jhih‐Sian ; Kuo, Pai‐Chia ; Shiue, Jessie ; Chen, Chia‐Chun ; Chen, Chun‐Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-a9aee9439bd2b468e58b5f3f7ee4929fc31ac997f1217326337d980f9d794613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Acid-base neutralization</topic><topic>Atomic properties</topic><topic>Boron nitride</topic><topic>Energy harvesting</topic><topic>Generators</topic><topic>ion transport</topic><topic>Membranes</topic><topic>Osmosis</topic><topic>osmotic power</topic><topic>proton gradient power</topic><topic>Protons</topic><topic>singe‐layer nanopore</topic><topic>Surface charge</topic><topic>Synergistic effect</topic><topic>Thickness</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ting‐Ran</creatorcontrib><creatorcontrib>Fung, Man Yui Thomas</creatorcontrib><creatorcontrib>Yeh, Li‐Hsien</creatorcontrib><creatorcontrib>Chiang, Chun‐Hao</creatorcontrib><creatorcontrib>Yang, Jhih‐Sian</creatorcontrib><creatorcontrib>Kuo, Pai‐Chia</creatorcontrib><creatorcontrib>Shiue, Jessie</creatorcontrib><creatorcontrib>Chen, Chia‐Chun</creatorcontrib><creatorcontrib>Chen, Chun‐Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ting‐Ran</au><au>Fung, Man Yui Thomas</au><au>Yeh, Li‐Hsien</au><au>Chiang, Chun‐Hao</au><au>Yang, Jhih‐Sian</au><au>Kuo, Pai‐Chia</au><au>Shiue, Jessie</au><au>Chen, Chia‐Chun</au><au>Chen, Chun‐Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>20</volume><issue>16</issue><spage>e2306018</spage><epage>n/a</epage><pages>e2306018-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Atomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single‐layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high‐performance ion‐gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis‐driven proton‐gradient power up to ≈3 nW under 1000‐fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid‐base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single‐layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions. An atomically thin 2D hexagonal boron nitride (hBN) nanopore with an ultrahigh surface charge for highly efficient ionic gradient power harvesting is demonstrated. Benefiting from ultrafast ion transport and excellent cation selectivity, a single hBN nanopore reaches an unprecedented nanowatt level under various ionic gradients, more than ten times higher than all the state‐of‐the‐art single‐pore devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38041449</pmid><doi>10.1002/smll.202306018</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9066-4657</orcidid><orcidid>https://orcid.org/0000-0003-3096-249X</orcidid><orcidid>https://orcid.org/0000-0003-2982-5340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (16), p.e2306018-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2896803764
source Wiley Online Library Journals Frontfile Complete
subjects 2D materials
Acid-base neutralization
Atomic properties
Boron nitride
Energy harvesting
Generators
ion transport
Membranes
Osmosis
osmotic power
proton gradient power
Protons
singe‐layer nanopore
Surface charge
Synergistic effect
Thickness
Two dimensional materials
title Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Layer%20Hexagonal%20Boron%20Nitride%20Nanopores%20as%20High%E2%80%90Performance%20Ionic%20Gradient%20Power%20Generators&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Ting%E2%80%90Ran&rft.date=2024-04-01&rft.volume=20&rft.issue=16&rft.spage=e2306018&rft.epage=n/a&rft.pages=e2306018-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202306018&rft_dat=%3Cproquest_cross%3E2896803764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040187429&rft_id=info:pmid/38041449&rfr_iscdi=true