Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean
Key message A locus, dt3 , modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations. Stem growth habit is a key architectural trait in many plants that contributes to plant productivit...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2023-12, Vol.136 (12), p.258-258, Article 258 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 12 |
container_start_page | 258 |
container_title | Theoretical and applied genetics |
container_volume | 136 |
creator | Clark, Chancelor B. Zhang, Dajian Wang, Weidong Ma, Jianxin |
description | Key message
A locus,
dt3
, modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations.
Stem growth habit is a key architectural trait in many plants that contributes to plant productivity and environmental adaptation. In soybean, stem growth habit is classified as indeterminate, semideterminate, or determinate, of which semideterminacy is often considered as a counterpart of the “Green Revolution” trait in cereals that significantly increased grain yields. It has been demonstrated that semideterminacy in soybean is modulated by epistatic interaction between two loci,
Dt1
on chromosome 19 and
Dt2
on chromosome 18, with the latter as a negative regulator of the former. Here, we report the discovery of a third locus,
Dt3,
modulating soybean stem growth habit, which was delineated to a ~ 196-kb region on chromosome 10 by a combination of allelic and haplotypic analysis of the
Dt1
and
Dt2
loci in the USDA soybean Germplasm Collection, genome-wide association studies with three subsets of the collection, and linkage mapping with four biparental populations derived from crosses between one of two elite indeterminate cultivars and each of four semideterminate varieties possessing neither
Dt2
nor
dt1
. These four semideterminate varieties are recessive mutants (i.e.,
dt3
/
dt3
) in the
Dt1
/
Dt1
;
dt2
/
dt2
background. As the semideterminacy modulated by the
Dt2
allele has unfavorable pleotropic effects such as sensitivity to drought stress,
dt3
may be an ideal alternative for use to develop semideterminate cultivars that are more resilient to such an environmental stress. This study enhances our understanding of the genetic factors underlying semideterminacy and enables more accurate marker-assisted selection for stem growth habit in soybean breeding. |
doi_str_mv | 10.1007/s00122-023-04493-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895708837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775079595</galeid><sourcerecordid>A775079595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-2d488b9d64622a652a4ec834feaae86c154b3e1bf38ea8ddcebc99c65c4da12c3</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxYModl39B3yQgC8KnZrJx0zyWIrVhYLgx3PIJHe2KTOZMcm67n_fbLdaVkS5D4Gb3zlwLgehlzU5qwlp3yVCakorQllFOFes2j5Ci5ozWlHK6WO0IISTSrSCnqBnKd0QQqgg7Ck6YZIwylq2QGHlIGTfe2uynwI2weHRzLMPazz12OAIFlLyPwCbYYABTrHL7BSnGazvd3sswegdZIijDyYDThlGvI7TNl_ja9P5jH3Aadp1YMJz9KQ3Q4IX9-8Sfbt8__XiY3X16cPq4vyqsoLwXFHHpeyUa3hDqWkENRysZLwHY0A2tha8Y1B3PZNgpHMWOquUbYTlztTUsiV6c_Cd4_R9Aynr0ScLw2ACTJukWS2YEFIp9V-USiVaImU51xK9_gO9mTYxlCB3lKCK8vqBWpsBtA_9lKOxe1N93raCtEooUaizv1BlXDmnnQL0vuyPBG-PBIXJ8DOvzSYlvfry-ZilB9bGKaUIvZ6jH03c6ZrofXf0oTu6dEffdUdvi-jVfbpNN4L7LflVlgKwA5DKV1hDfIj_D9tbbl_N2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895529241</pqid></control><display><type>article</type><title>Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Clark, Chancelor B. ; Zhang, Dajian ; Wang, Weidong ; Ma, Jianxin</creator><creatorcontrib>Clark, Chancelor B. ; Zhang, Dajian ; Wang, Weidong ; Ma, Jianxin</creatorcontrib><description>Key message
A locus,
dt3
, modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations.
Stem growth habit is a key architectural trait in many plants that contributes to plant productivity and environmental adaptation. In soybean, stem growth habit is classified as indeterminate, semideterminate, or determinate, of which semideterminacy is often considered as a counterpart of the “Green Revolution” trait in cereals that significantly increased grain yields. It has been demonstrated that semideterminacy in soybean is modulated by epistatic interaction between two loci,
Dt1
on chromosome 19 and
Dt2
on chromosome 18, with the latter as a negative regulator of the former. Here, we report the discovery of a third locus,
Dt3,
modulating soybean stem growth habit, which was delineated to a ~ 196-kb region on chromosome 10 by a combination of allelic and haplotypic analysis of the
Dt1
and
Dt2
loci in the USDA soybean Germplasm Collection, genome-wide association studies with three subsets of the collection, and linkage mapping with four biparental populations derived from crosses between one of two elite indeterminate cultivars and each of four semideterminate varieties possessing neither
Dt2
nor
dt1
. These four semideterminate varieties are recessive mutants (i.e.,
dt3
/
dt3
) in the
Dt1
/
Dt1
;
dt2
/
dt2
background. As the semideterminacy modulated by the
Dt2
allele has unfavorable pleotropic effects such as sensitivity to drought stress,
dt3
may be an ideal alternative for use to develop semideterminate cultivars that are more resilient to such an environmental stress. This study enhances our understanding of the genetic factors underlying semideterminacy and enables more accurate marker-assisted selection for stem growth habit in soybean breeding.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-023-04493-w</identifier><identifier>PMID: 38032373</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Alleles ; Allelomorphism ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cereals ; Chromosome 10 ; Chromosome 18 ; Chromosome 19 ; Chromosome mapping ; Chromosomes ; Cultivars ; Drought ; Edible Grain ; Environmental stress ; Epistasis ; Gene mapping ; Genetic aspects ; Genetic factors ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Germplasm ; germplasm conservation ; Glycine max - genetics ; Growth (Plants) ; growth habit ; Habits ; Life Sciences ; loci ; Marker-assisted selection ; Methods ; Original Article ; Physiological aspects ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Soybean ; Soybeans ; stem elongation ; Stems (Botany) ; USDA ; water stress</subject><ispartof>Theoretical and applied genetics, 2023-12, Vol.136 (12), p.258-258, Article 258</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c504t-2d488b9d64622a652a4ec834feaae86c154b3e1bf38ea8ddcebc99c65c4da12c3</cites><orcidid>0000-0002-7110-5630 ; 0000-0002-1474-812X ; 0000-0002-2255-2514 ; 0000-0002-5118-5514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-023-04493-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-023-04493-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38032373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clark, Chancelor B.</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Ma, Jianxin</creatorcontrib><title>Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
A locus,
dt3
, modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations.
Stem growth habit is a key architectural trait in many plants that contributes to plant productivity and environmental adaptation. In soybean, stem growth habit is classified as indeterminate, semideterminate, or determinate, of which semideterminacy is often considered as a counterpart of the “Green Revolution” trait in cereals that significantly increased grain yields. It has been demonstrated that semideterminacy in soybean is modulated by epistatic interaction between two loci,
Dt1
on chromosome 19 and
Dt2
on chromosome 18, with the latter as a negative regulator of the former. Here, we report the discovery of a third locus,
Dt3,
modulating soybean stem growth habit, which was delineated to a ~ 196-kb region on chromosome 10 by a combination of allelic and haplotypic analysis of the
Dt1
and
Dt2
loci in the USDA soybean Germplasm Collection, genome-wide association studies with three subsets of the collection, and linkage mapping with four biparental populations derived from crosses between one of two elite indeterminate cultivars and each of four semideterminate varieties possessing neither
Dt2
nor
dt1
. These four semideterminate varieties are recessive mutants (i.e.,
dt3
/
dt3
) in the
Dt1
/
Dt1
;
dt2
/
dt2
background. As the semideterminacy modulated by the
Dt2
allele has unfavorable pleotropic effects such as sensitivity to drought stress,
dt3
may be an ideal alternative for use to develop semideterminate cultivars that are more resilient to such an environmental stress. This study enhances our understanding of the genetic factors underlying semideterminacy and enables more accurate marker-assisted selection for stem growth habit in soybean breeding.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Allelomorphism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cereals</subject><subject>Chromosome 10</subject><subject>Chromosome 18</subject><subject>Chromosome 19</subject><subject>Chromosome mapping</subject><subject>Chromosomes</subject><subject>Cultivars</subject><subject>Drought</subject><subject>Edible Grain</subject><subject>Environmental stress</subject><subject>Epistasis</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Genetic factors</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Germplasm</subject><subject>germplasm conservation</subject><subject>Glycine max - genetics</subject><subject>Growth (Plants)</subject><subject>growth habit</subject><subject>Habits</subject><subject>Life Sciences</subject><subject>loci</subject><subject>Marker-assisted selection</subject><subject>Methods</subject><subject>Original Article</subject><subject>Physiological aspects</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Soybean</subject><subject>Soybeans</subject><subject>stem elongation</subject><subject>Stems (Botany)</subject><subject>USDA</subject><subject>water stress</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkt1rFDEUxYModl39B3yQgC8KnZrJx0zyWIrVhYLgx3PIJHe2KTOZMcm67n_fbLdaVkS5D4Gb3zlwLgehlzU5qwlp3yVCakorQllFOFes2j5Ci5ozWlHK6WO0IISTSrSCnqBnKd0QQqgg7Ck6YZIwylq2QGHlIGTfe2uynwI2weHRzLMPazz12OAIFlLyPwCbYYABTrHL7BSnGazvd3sswegdZIijDyYDThlGvI7TNl_ja9P5jH3Aadp1YMJz9KQ3Q4IX9-8Sfbt8__XiY3X16cPq4vyqsoLwXFHHpeyUa3hDqWkENRysZLwHY0A2tha8Y1B3PZNgpHMWOquUbYTlztTUsiV6c_Cd4_R9Aynr0ScLw2ACTJukWS2YEFIp9V-USiVaImU51xK9_gO9mTYxlCB3lKCK8vqBWpsBtA_9lKOxe1N93raCtEooUaizv1BlXDmnnQL0vuyPBG-PBIXJ8DOvzSYlvfry-ZilB9bGKaUIvZ6jH03c6ZrofXf0oTu6dEffdUdvi-jVfbpNN4L7LflVlgKwA5DKV1hDfIj_D9tbbl_N2w</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Clark, Chancelor B.</creator><creator>Zhang, Dajian</creator><creator>Wang, Weidong</creator><creator>Ma, Jianxin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7110-5630</orcidid><orcidid>https://orcid.org/0000-0002-1474-812X</orcidid><orcidid>https://orcid.org/0000-0002-2255-2514</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid></search><sort><creationdate>20231201</creationdate><title>Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean</title><author>Clark, Chancelor B. ; Zhang, Dajian ; Wang, Weidong ; Ma, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-2d488b9d64622a652a4ec834feaae86c154b3e1bf38ea8ddcebc99c65c4da12c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Allelomorphism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cereals</topic><topic>Chromosome 10</topic><topic>Chromosome 18</topic><topic>Chromosome 19</topic><topic>Chromosome mapping</topic><topic>Chromosomes</topic><topic>Cultivars</topic><topic>Drought</topic><topic>Edible Grain</topic><topic>Environmental stress</topic><topic>Epistasis</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Genetic factors</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Germplasm</topic><topic>germplasm conservation</topic><topic>Glycine max - genetics</topic><topic>Growth (Plants)</topic><topic>growth habit</topic><topic>Habits</topic><topic>Life Sciences</topic><topic>loci</topic><topic>Marker-assisted selection</topic><topic>Methods</topic><topic>Original Article</topic><topic>Physiological aspects</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Soybean</topic><topic>Soybeans</topic><topic>stem elongation</topic><topic>Stems (Botany)</topic><topic>USDA</topic><topic>water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Chancelor B.</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Ma, Jianxin</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Chancelor B.</au><au>Zhang, Dajian</au><au>Wang, Weidong</au><au>Ma, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>136</volume><issue>12</issue><spage>258</spage><epage>258</epage><pages>258-258</pages><artnum>258</artnum><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
A locus,
dt3
, modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations.
Stem growth habit is a key architectural trait in many plants that contributes to plant productivity and environmental adaptation. In soybean, stem growth habit is classified as indeterminate, semideterminate, or determinate, of which semideterminacy is often considered as a counterpart of the “Green Revolution” trait in cereals that significantly increased grain yields. It has been demonstrated that semideterminacy in soybean is modulated by epistatic interaction between two loci,
Dt1
on chromosome 19 and
Dt2
on chromosome 18, with the latter as a negative regulator of the former. Here, we report the discovery of a third locus,
Dt3,
modulating soybean stem growth habit, which was delineated to a ~ 196-kb region on chromosome 10 by a combination of allelic and haplotypic analysis of the
Dt1
and
Dt2
loci in the USDA soybean Germplasm Collection, genome-wide association studies with three subsets of the collection, and linkage mapping with four biparental populations derived from crosses between one of two elite indeterminate cultivars and each of four semideterminate varieties possessing neither
Dt2
nor
dt1
. These four semideterminate varieties are recessive mutants (i.e.,
dt3
/
dt3
) in the
Dt1
/
Dt1
;
dt2
/
dt2
background. As the semideterminacy modulated by the
Dt2
allele has unfavorable pleotropic effects such as sensitivity to drought stress,
dt3
may be an ideal alternative for use to develop semideterminate cultivars that are more resilient to such an environmental stress. This study enhances our understanding of the genetic factors underlying semideterminacy and enables more accurate marker-assisted selection for stem growth habit in soybean breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38032373</pmid><doi>10.1007/s00122-023-04493-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7110-5630</orcidid><orcidid>https://orcid.org/0000-0002-1474-812X</orcidid><orcidid>https://orcid.org/0000-0002-2255-2514</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2023-12, Vol.136 (12), p.258-258, Article 258 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2895708837 |
source | MEDLINE; SpringerLink (Online service) |
subjects | Agricultural research Agriculture Alleles Allelomorphism Biochemistry Biomedical and Life Sciences Biotechnology Cereals Chromosome 10 Chromosome 18 Chromosome 19 Chromosome mapping Chromosomes Cultivars Drought Edible Grain Environmental stress Epistasis Gene mapping Genetic aspects Genetic factors Genome-wide association studies Genome-Wide Association Study Genomes Germplasm germplasm conservation Glycine max - genetics Growth (Plants) growth habit Habits Life Sciences loci Marker-assisted selection Methods Original Article Physiological aspects Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Soybean Soybeans stem elongation Stems (Botany) USDA water stress |
title | Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20mapping%20of%20a%20recessive%20allele,%20dt3,%20specifying%20semideterminate%20stem%20growth%20habit%20in%20soybean&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Clark,%20Chancelor%20B.&rft.date=2023-12-01&rft.volume=136&rft.issue=12&rft.spage=258&rft.epage=258&rft.pages=258-258&rft.artnum=258&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-023-04493-w&rft_dat=%3Cgale_proqu%3EA775079595%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895529241&rft_id=info:pmid/38032373&rft_galeid=A775079595&rfr_iscdi=true |