Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean

Key message A locus, dt3 , modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations. Stem growth habit is a key architectural trait in many plants that contributes to plant productivit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2023-12, Vol.136 (12), p.258-258, Article 258
Hauptverfasser: Clark, Chancelor B., Zhang, Dajian, Wang, Weidong, Ma, Jianxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 12
container_start_page 258
container_title Theoretical and applied genetics
container_volume 136
creator Clark, Chancelor B.
Zhang, Dajian
Wang, Weidong
Ma, Jianxin
description Key message A locus, dt3 , modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations. Stem growth habit is a key architectural trait in many plants that contributes to plant productivity and environmental adaptation. In soybean, stem growth habit is classified as indeterminate, semideterminate, or determinate, of which semideterminacy is often considered as a counterpart of the “Green Revolution” trait in cereals that significantly increased grain yields. It has been demonstrated that semideterminacy in soybean is modulated by epistatic interaction between two loci, Dt1 on chromosome 19 and Dt2 on chromosome 18, with the latter as a negative regulator of the former. Here, we report the discovery of a third locus, Dt3, modulating soybean stem growth habit, which was delineated to a ~ 196-kb region on chromosome 10 by a combination of allelic and haplotypic analysis of the Dt1 and Dt2 loci in the USDA soybean Germplasm Collection, genome-wide association studies with three subsets of the collection, and linkage mapping with four biparental populations derived from crosses between one of two elite indeterminate cultivars and each of four semideterminate varieties possessing neither Dt2 nor dt1 . These four semideterminate varieties are recessive mutants (i.e., dt3 / dt3 ) in the Dt1 / Dt1 ; dt2 / dt2 background. As the semideterminacy modulated by the Dt2 allele has unfavorable pleotropic effects such as sensitivity to drought stress, dt3 may be an ideal alternative for use to develop semideterminate cultivars that are more resilient to such an environmental stress. This study enhances our understanding of the genetic factors underlying semideterminacy and enables more accurate marker-assisted selection for stem growth habit in soybean breeding.
doi_str_mv 10.1007/s00122-023-04493-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895708837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775079595</galeid><sourcerecordid>A775079595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-2d488b9d64622a652a4ec834feaae86c154b3e1bf38ea8ddcebc99c65c4da12c3</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxYModl39B3yQgC8KnZrJx0zyWIrVhYLgx3PIJHe2KTOZMcm67n_fbLdaVkS5D4Gb3zlwLgehlzU5qwlp3yVCakorQllFOFes2j5Ci5ozWlHK6WO0IISTSrSCnqBnKd0QQqgg7Ck6YZIwylq2QGHlIGTfe2uynwI2weHRzLMPazz12OAIFlLyPwCbYYABTrHL7BSnGazvd3sswegdZIijDyYDThlGvI7TNl_ja9P5jH3Aadp1YMJz9KQ3Q4IX9-8Sfbt8__XiY3X16cPq4vyqsoLwXFHHpeyUa3hDqWkENRysZLwHY0A2tha8Y1B3PZNgpHMWOquUbYTlztTUsiV6c_Cd4_R9Aynr0ScLw2ACTJukWS2YEFIp9V-USiVaImU51xK9_gO9mTYxlCB3lKCK8vqBWpsBtA_9lKOxe1N93raCtEooUaizv1BlXDmnnQL0vuyPBG-PBIXJ8DOvzSYlvfry-ZilB9bGKaUIvZ6jH03c6ZrofXf0oTu6dEffdUdvi-jVfbpNN4L7LflVlgKwA5DKV1hDfIj_D9tbbl_N2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895529241</pqid></control><display><type>article</type><title>Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Clark, Chancelor B. ; Zhang, Dajian ; Wang, Weidong ; Ma, Jianxin</creator><creatorcontrib>Clark, Chancelor B. ; Zhang, Dajian ; Wang, Weidong ; Ma, Jianxin</creatorcontrib><description>Key message A locus, dt3 , modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations. Stem growth habit is a key architectural trait in many plants that contributes to plant productivity and environmental adaptation. In soybean, stem growth habit is classified as indeterminate, semideterminate, or determinate, of which semideterminacy is often considered as a counterpart of the “Green Revolution” trait in cereals that significantly increased grain yields. It has been demonstrated that semideterminacy in soybean is modulated by epistatic interaction between two loci, Dt1 on chromosome 19 and Dt2 on chromosome 18, with the latter as a negative regulator of the former. Here, we report the discovery of a third locus, Dt3, modulating soybean stem growth habit, which was delineated to a ~ 196-kb region on chromosome 10 by a combination of allelic and haplotypic analysis of the Dt1 and Dt2 loci in the USDA soybean Germplasm Collection, genome-wide association studies with three subsets of the collection, and linkage mapping with four biparental populations derived from crosses between one of two elite indeterminate cultivars and each of four semideterminate varieties possessing neither Dt2 nor dt1 . These four semideterminate varieties are recessive mutants (i.e., dt3 / dt3 ) in the Dt1 / Dt1 ; dt2 / dt2 background. As the semideterminacy modulated by the Dt2 allele has unfavorable pleotropic effects such as sensitivity to drought stress, dt3 may be an ideal alternative for use to develop semideterminate cultivars that are more resilient to such an environmental stress. This study enhances our understanding of the genetic factors underlying semideterminacy and enables more accurate marker-assisted selection for stem growth habit in soybean breeding.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-023-04493-w</identifier><identifier>PMID: 38032373</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Alleles ; Allelomorphism ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cereals ; Chromosome 10 ; Chromosome 18 ; Chromosome 19 ; Chromosome mapping ; Chromosomes ; Cultivars ; Drought ; Edible Grain ; Environmental stress ; Epistasis ; Gene mapping ; Genetic aspects ; Genetic factors ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Germplasm ; germplasm conservation ; Glycine max - genetics ; Growth (Plants) ; growth habit ; Habits ; Life Sciences ; loci ; Marker-assisted selection ; Methods ; Original Article ; Physiological aspects ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Soybean ; Soybeans ; stem elongation ; Stems (Botany) ; USDA ; water stress</subject><ispartof>Theoretical and applied genetics, 2023-12, Vol.136 (12), p.258-258, Article 258</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c504t-2d488b9d64622a652a4ec834feaae86c154b3e1bf38ea8ddcebc99c65c4da12c3</cites><orcidid>0000-0002-7110-5630 ; 0000-0002-1474-812X ; 0000-0002-2255-2514 ; 0000-0002-5118-5514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-023-04493-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-023-04493-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38032373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clark, Chancelor B.</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Ma, Jianxin</creatorcontrib><title>Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message A locus, dt3 , modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations. Stem growth habit is a key architectural trait in many plants that contributes to plant productivity and environmental adaptation. In soybean, stem growth habit is classified as indeterminate, semideterminate, or determinate, of which semideterminacy is often considered as a counterpart of the “Green Revolution” trait in cereals that significantly increased grain yields. It has been demonstrated that semideterminacy in soybean is modulated by epistatic interaction between two loci, Dt1 on chromosome 19 and Dt2 on chromosome 18, with the latter as a negative regulator of the former. Here, we report the discovery of a third locus, Dt3, modulating soybean stem growth habit, which was delineated to a ~ 196-kb region on chromosome 10 by a combination of allelic and haplotypic analysis of the Dt1 and Dt2 loci in the USDA soybean Germplasm Collection, genome-wide association studies with three subsets of the collection, and linkage mapping with four biparental populations derived from crosses between one of two elite indeterminate cultivars and each of four semideterminate varieties possessing neither Dt2 nor dt1 . These four semideterminate varieties are recessive mutants (i.e., dt3 / dt3 ) in the Dt1 / Dt1 ; dt2 / dt2 background. As the semideterminacy modulated by the Dt2 allele has unfavorable pleotropic effects such as sensitivity to drought stress, dt3 may be an ideal alternative for use to develop semideterminate cultivars that are more resilient to such an environmental stress. This study enhances our understanding of the genetic factors underlying semideterminacy and enables more accurate marker-assisted selection for stem growth habit in soybean breeding.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Allelomorphism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cereals</subject><subject>Chromosome 10</subject><subject>Chromosome 18</subject><subject>Chromosome 19</subject><subject>Chromosome mapping</subject><subject>Chromosomes</subject><subject>Cultivars</subject><subject>Drought</subject><subject>Edible Grain</subject><subject>Environmental stress</subject><subject>Epistasis</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Genetic factors</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Germplasm</subject><subject>germplasm conservation</subject><subject>Glycine max - genetics</subject><subject>Growth (Plants)</subject><subject>growth habit</subject><subject>Habits</subject><subject>Life Sciences</subject><subject>loci</subject><subject>Marker-assisted selection</subject><subject>Methods</subject><subject>Original Article</subject><subject>Physiological aspects</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Soybean</subject><subject>Soybeans</subject><subject>stem elongation</subject><subject>Stems (Botany)</subject><subject>USDA</subject><subject>water stress</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkt1rFDEUxYModl39B3yQgC8KnZrJx0zyWIrVhYLgx3PIJHe2KTOZMcm67n_fbLdaVkS5D4Gb3zlwLgehlzU5qwlp3yVCakorQllFOFes2j5Ci5ozWlHK6WO0IISTSrSCnqBnKd0QQqgg7Ck6YZIwylq2QGHlIGTfe2uynwI2weHRzLMPazz12OAIFlLyPwCbYYABTrHL7BSnGazvd3sswegdZIijDyYDThlGvI7TNl_ja9P5jH3Aadp1YMJz9KQ3Q4IX9-8Sfbt8__XiY3X16cPq4vyqsoLwXFHHpeyUa3hDqWkENRysZLwHY0A2tha8Y1B3PZNgpHMWOquUbYTlztTUsiV6c_Cd4_R9Aynr0ScLw2ACTJukWS2YEFIp9V-USiVaImU51xK9_gO9mTYxlCB3lKCK8vqBWpsBtA_9lKOxe1N93raCtEooUaizv1BlXDmnnQL0vuyPBG-PBIXJ8DOvzSYlvfry-ZilB9bGKaUIvZ6jH03c6ZrofXf0oTu6dEffdUdvi-jVfbpNN4L7LflVlgKwA5DKV1hDfIj_D9tbbl_N2w</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Clark, Chancelor B.</creator><creator>Zhang, Dajian</creator><creator>Wang, Weidong</creator><creator>Ma, Jianxin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7110-5630</orcidid><orcidid>https://orcid.org/0000-0002-1474-812X</orcidid><orcidid>https://orcid.org/0000-0002-2255-2514</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid></search><sort><creationdate>20231201</creationdate><title>Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean</title><author>Clark, Chancelor B. ; Zhang, Dajian ; Wang, Weidong ; Ma, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-2d488b9d64622a652a4ec834feaae86c154b3e1bf38ea8ddcebc99c65c4da12c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Allelomorphism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cereals</topic><topic>Chromosome 10</topic><topic>Chromosome 18</topic><topic>Chromosome 19</topic><topic>Chromosome mapping</topic><topic>Chromosomes</topic><topic>Cultivars</topic><topic>Drought</topic><topic>Edible Grain</topic><topic>Environmental stress</topic><topic>Epistasis</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Genetic factors</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Germplasm</topic><topic>germplasm conservation</topic><topic>Glycine max - genetics</topic><topic>Growth (Plants)</topic><topic>growth habit</topic><topic>Habits</topic><topic>Life Sciences</topic><topic>loci</topic><topic>Marker-assisted selection</topic><topic>Methods</topic><topic>Original Article</topic><topic>Physiological aspects</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Soybean</topic><topic>Soybeans</topic><topic>stem elongation</topic><topic>Stems (Botany)</topic><topic>USDA</topic><topic>water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Chancelor B.</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Ma, Jianxin</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Chancelor B.</au><au>Zhang, Dajian</au><au>Wang, Weidong</au><au>Ma, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>136</volume><issue>12</issue><spage>258</spage><epage>258</epage><pages>258-258</pages><artnum>258</artnum><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message A locus, dt3 , modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations. Stem growth habit is a key architectural trait in many plants that contributes to plant productivity and environmental adaptation. In soybean, stem growth habit is classified as indeterminate, semideterminate, or determinate, of which semideterminacy is often considered as a counterpart of the “Green Revolution” trait in cereals that significantly increased grain yields. It has been demonstrated that semideterminacy in soybean is modulated by epistatic interaction between two loci, Dt1 on chromosome 19 and Dt2 on chromosome 18, with the latter as a negative regulator of the former. Here, we report the discovery of a third locus, Dt3, modulating soybean stem growth habit, which was delineated to a ~ 196-kb region on chromosome 10 by a combination of allelic and haplotypic analysis of the Dt1 and Dt2 loci in the USDA soybean Germplasm Collection, genome-wide association studies with three subsets of the collection, and linkage mapping with four biparental populations derived from crosses between one of two elite indeterminate cultivars and each of four semideterminate varieties possessing neither Dt2 nor dt1 . These four semideterminate varieties are recessive mutants (i.e., dt3 / dt3 ) in the Dt1 / Dt1 ; dt2 / dt2 background. As the semideterminacy modulated by the Dt2 allele has unfavorable pleotropic effects such as sensitivity to drought stress, dt3 may be an ideal alternative for use to develop semideterminate cultivars that are more resilient to such an environmental stress. This study enhances our understanding of the genetic factors underlying semideterminacy and enables more accurate marker-assisted selection for stem growth habit in soybean breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38032373</pmid><doi>10.1007/s00122-023-04493-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7110-5630</orcidid><orcidid>https://orcid.org/0000-0002-1474-812X</orcidid><orcidid>https://orcid.org/0000-0002-2255-2514</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2023-12, Vol.136 (12), p.258-258, Article 258
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_2895708837
source MEDLINE; SpringerLink (Online service)
subjects Agricultural research
Agriculture
Alleles
Allelomorphism
Biochemistry
Biomedical and Life Sciences
Biotechnology
Cereals
Chromosome 10
Chromosome 18
Chromosome 19
Chromosome mapping
Chromosomes
Cultivars
Drought
Edible Grain
Environmental stress
Epistasis
Gene mapping
Genetic aspects
Genetic factors
Genome-wide association studies
Genome-Wide Association Study
Genomes
Germplasm
germplasm conservation
Glycine max - genetics
Growth (Plants)
growth habit
Habits
Life Sciences
loci
Marker-assisted selection
Methods
Original Article
Physiological aspects
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Soybean
Soybeans
stem elongation
Stems (Botany)
USDA
water stress
title Identification and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20mapping%20of%20a%20recessive%20allele,%20dt3,%20specifying%20semideterminate%20stem%20growth%20habit%20in%20soybean&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Clark,%20Chancelor%20B.&rft.date=2023-12-01&rft.volume=136&rft.issue=12&rft.spage=258&rft.epage=258&rft.pages=258-258&rft.artnum=258&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-023-04493-w&rft_dat=%3Cgale_proqu%3EA775079595%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895529241&rft_id=info:pmid/38032373&rft_galeid=A775079595&rfr_iscdi=true