High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure

Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-11, Vol.15 (49), p.57514-57524
Hauptverfasser: Zhou, Jianlin, Ding, Canxia, Zhang, Xuehui, Li, Donglei, Yang, Dicong, You, Bo, Wu, Limin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57524
container_issue 49
container_start_page 57514
container_title ACS applied materials & interfaces
container_volume 15
creator Zhou, Jianlin
Ding, Canxia
Zhang, Xuehui
Li, Donglei
Yang, Dicong
You, Bo
Wu, Limin
description Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film’s long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc.
doi_str_mv 10.1021/acsami.3c14310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895708828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895708828</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-da80d1ad6dc697bb60de70a9603a8740272d58cc348236b07926b507623c93a43</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhCMEEqVw5ewjQqQ4duI4R-iDVqqExONsbWy3dXHiYidA_z2pUnHjtKvZ-VaaiaLrBI8STJJ7kAEqM6IySWmCT6JBUqRpzElGTv_2ND2PLkLYYswowdkg-p6b9SaetB5Kq-_QCygDjfnS8dg5a-r1HYJaobmGJl7UobXdsV6jmdU_pgPQzNgqoGl9oBUq9wjQo3GmDjvjO2FiZLN3u43zEC_Nh0avjW9l03p9GZ2twAZ9dZzD6H02fRvP4-Xz02L8sIyBMNLECjhWCSimJCvysmRY6RxDwTAFnqeY5ERlXEqackJZifOCsDLDOSNUFhRSOoxu-r877z5bHRpRmSC1tVBr1wZBeJHlmHPCO-uot0rvQvB6JXbeVOD3IsHi0LDoGxbHhjvgtgc6XWxd6-suyX_mX_Ykfb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895708828</pqid></control><display><type>article</type><title>High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure</title><source>ACS Publications</source><creator>Zhou, Jianlin ; Ding, Canxia ; Zhang, Xuehui ; Li, Donglei ; Yang, Dicong ; You, Bo ; Wu, Limin</creator><creatorcontrib>Zhou, Jianlin ; Ding, Canxia ; Zhang, Xuehui ; Li, Donglei ; Yang, Dicong ; You, Bo ; Wu, Limin</creatorcontrib><description>Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film’s long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c14310</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2023-11, Vol.15 (49), p.57514-57524</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a262t-da80d1ad6dc697bb60de70a9603a8740272d58cc348236b07926b507623c93a43</cites><orcidid>0000-0001-8495-8627 ; 0000-0003-2830-4711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c14310$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c14310$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhou, Jianlin</creatorcontrib><creatorcontrib>Ding, Canxia</creatorcontrib><creatorcontrib>Zhang, Xuehui</creatorcontrib><creatorcontrib>Li, Donglei</creatorcontrib><creatorcontrib>Yang, Dicong</creatorcontrib><creatorcontrib>You, Bo</creatorcontrib><creatorcontrib>Wu, Limin</creatorcontrib><title>High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film’s long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhCMEEqVw5ewjQqQ4duI4R-iDVqqExONsbWy3dXHiYidA_z2pUnHjtKvZ-VaaiaLrBI8STJJ7kAEqM6IySWmCT6JBUqRpzElGTv_2ND2PLkLYYswowdkg-p6b9SaetB5Kq-_QCygDjfnS8dg5a-r1HYJaobmGJl7UobXdsV6jmdU_pgPQzNgqoGl9oBUq9wjQo3GmDjvjO2FiZLN3u43zEC_Nh0avjW9l03p9GZ2twAZ9dZzD6H02fRvP4-Xz02L8sIyBMNLECjhWCSimJCvysmRY6RxDwTAFnqeY5ERlXEqackJZifOCsDLDOSNUFhRSOoxu-r877z5bHRpRmSC1tVBr1wZBeJHlmHPCO-uot0rvQvB6JXbeVOD3IsHi0LDoGxbHhjvgtgc6XWxd6-suyX_mX_Ykfb4</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Zhou, Jianlin</creator><creator>Ding, Canxia</creator><creator>Zhang, Xuehui</creator><creator>Li, Donglei</creator><creator>Yang, Dicong</creator><creator>You, Bo</creator><creator>Wu, Limin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8495-8627</orcidid><orcidid>https://orcid.org/0000-0003-2830-4711</orcidid></search><sort><creationdate>20231130</creationdate><title>High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure</title><author>Zhou, Jianlin ; Ding, Canxia ; Zhang, Xuehui ; Li, Donglei ; Yang, Dicong ; You, Bo ; Wu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-da80d1ad6dc697bb60de70a9603a8740272d58cc348236b07926b507623c93a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jianlin</creatorcontrib><creatorcontrib>Ding, Canxia</creatorcontrib><creatorcontrib>Zhang, Xuehui</creatorcontrib><creatorcontrib>Li, Donglei</creatorcontrib><creatorcontrib>Yang, Dicong</creatorcontrib><creatorcontrib>You, Bo</creatorcontrib><creatorcontrib>Wu, Limin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jianlin</au><au>Ding, Canxia</au><au>Zhang, Xuehui</au><au>Li, Donglei</au><au>Yang, Dicong</au><au>You, Bo</au><au>Wu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-11-30</date><risdate>2023</risdate><volume>15</volume><issue>49</issue><spage>57514</spage><epage>57524</epage><pages>57514-57524</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film’s long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c14310</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8495-8627</orcidid><orcidid>https://orcid.org/0000-0003-2830-4711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-11, Vol.15 (49), p.57514-57524
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2895708828
source ACS Publications
subjects Functional Nanostructured Materials (including low-D carbon)
title High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Durable,%20Radiative-Cooling,%20and%20Heat-Insulating%20Flexible%20Films%20Enabled%20by%20a%20Bioinspired%20Dictyophora-Like%20Structure&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhou,%20Jianlin&rft.date=2023-11-30&rft.volume=15&rft.issue=49&rft.spage=57514&rft.epage=57524&rft.pages=57514-57524&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c14310&rft_dat=%3Cproquest_cross%3E2895708828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895708828&rft_id=info:pmid/&rfr_iscdi=true