High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure
Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments,...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-11, Vol.15 (49), p.57514-57524 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57524 |
---|---|
container_issue | 49 |
container_start_page | 57514 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Zhou, Jianlin Ding, Canxia Zhang, Xuehui Li, Donglei Yang, Dicong You, Bo Wu, Limin |
description | Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film’s long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc. |
doi_str_mv | 10.1021/acsami.3c14310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895708828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895708828</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-da80d1ad6dc697bb60de70a9603a8740272d58cc348236b07926b507623c93a43</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhCMEEqVw5ewjQqQ4duI4R-iDVqqExONsbWy3dXHiYidA_z2pUnHjtKvZ-VaaiaLrBI8STJJ7kAEqM6IySWmCT6JBUqRpzElGTv_2ND2PLkLYYswowdkg-p6b9SaetB5Kq-_QCygDjfnS8dg5a-r1HYJaobmGJl7UobXdsV6jmdU_pgPQzNgqoGl9oBUq9wjQo3GmDjvjO2FiZLN3u43zEC_Nh0avjW9l03p9GZ2twAZ9dZzD6H02fRvP4-Xz02L8sIyBMNLECjhWCSimJCvysmRY6RxDwTAFnqeY5ERlXEqackJZifOCsDLDOSNUFhRSOoxu-r877z5bHRpRmSC1tVBr1wZBeJHlmHPCO-uot0rvQvB6JXbeVOD3IsHi0LDoGxbHhjvgtgc6XWxd6-suyX_mX_Ykfb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895708828</pqid></control><display><type>article</type><title>High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure</title><source>ACS Publications</source><creator>Zhou, Jianlin ; Ding, Canxia ; Zhang, Xuehui ; Li, Donglei ; Yang, Dicong ; You, Bo ; Wu, Limin</creator><creatorcontrib>Zhou, Jianlin ; Ding, Canxia ; Zhang, Xuehui ; Li, Donglei ; Yang, Dicong ; You, Bo ; Wu, Limin</creatorcontrib><description>Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film’s long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c14310</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials & interfaces, 2023-11, Vol.15 (49), p.57514-57524</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a262t-da80d1ad6dc697bb60de70a9603a8740272d58cc348236b07926b507623c93a43</cites><orcidid>0000-0001-8495-8627 ; 0000-0003-2830-4711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c14310$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c14310$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhou, Jianlin</creatorcontrib><creatorcontrib>Ding, Canxia</creatorcontrib><creatorcontrib>Zhang, Xuehui</creatorcontrib><creatorcontrib>Li, Donglei</creatorcontrib><creatorcontrib>Yang, Dicong</creatorcontrib><creatorcontrib>You, Bo</creatorcontrib><creatorcontrib>Wu, Limin</creatorcontrib><title>High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film’s long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhCMEEqVw5ewjQqQ4duI4R-iDVqqExONsbWy3dXHiYidA_z2pUnHjtKvZ-VaaiaLrBI8STJJ7kAEqM6IySWmCT6JBUqRpzElGTv_2ND2PLkLYYswowdkg-p6b9SaetB5Kq-_QCygDjfnS8dg5a-r1HYJaobmGJl7UobXdsV6jmdU_pgPQzNgqoGl9oBUq9wjQo3GmDjvjO2FiZLN3u43zEC_Nh0avjW9l03p9GZ2twAZ9dZzD6H02fRvP4-Xz02L8sIyBMNLECjhWCSimJCvysmRY6RxDwTAFnqeY5ERlXEqackJZifOCsDLDOSNUFhRSOoxu-r877z5bHRpRmSC1tVBr1wZBeJHlmHPCO-uot0rvQvB6JXbeVOD3IsHi0LDoGxbHhjvgtgc6XWxd6-suyX_mX_Ykfb4</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Zhou, Jianlin</creator><creator>Ding, Canxia</creator><creator>Zhang, Xuehui</creator><creator>Li, Donglei</creator><creator>Yang, Dicong</creator><creator>You, Bo</creator><creator>Wu, Limin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8495-8627</orcidid><orcidid>https://orcid.org/0000-0003-2830-4711</orcidid></search><sort><creationdate>20231130</creationdate><title>High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure</title><author>Zhou, Jianlin ; Ding, Canxia ; Zhang, Xuehui ; Li, Donglei ; Yang, Dicong ; You, Bo ; Wu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-da80d1ad6dc697bb60de70a9603a8740272d58cc348236b07926b507623c93a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jianlin</creatorcontrib><creatorcontrib>Ding, Canxia</creatorcontrib><creatorcontrib>Zhang, Xuehui</creatorcontrib><creatorcontrib>Li, Donglei</creatorcontrib><creatorcontrib>Yang, Dicong</creatorcontrib><creatorcontrib>You, Bo</creatorcontrib><creatorcontrib>Wu, Limin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jianlin</au><au>Ding, Canxia</au><au>Zhang, Xuehui</au><au>Li, Donglei</au><au>Yang, Dicong</au><au>You, Bo</au><au>Wu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-11-30</date><risdate>2023</risdate><volume>15</volume><issue>49</issue><spage>57514</spage><epage>57524</epage><pages>57514-57524</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film’s long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c14310</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8495-8627</orcidid><orcidid>https://orcid.org/0000-0003-2830-4711</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-11, Vol.15 (49), p.57514-57524 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2895708828 |
source | ACS Publications |
subjects | Functional Nanostructured Materials (including low-D carbon) |
title | High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Durable,%20Radiative-Cooling,%20and%20Heat-Insulating%20Flexible%20Films%20Enabled%20by%20a%20Bioinspired%20Dictyophora-Like%20Structure&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhou,%20Jianlin&rft.date=2023-11-30&rft.volume=15&rft.issue=49&rft.spage=57514&rft.epage=57524&rft.pages=57514-57524&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c14310&rft_dat=%3Cproquest_cross%3E2895708828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895708828&rft_id=info:pmid/&rfr_iscdi=true |