Is the State of the Air‐Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?

Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2017-12, Vol.122 (12), p.10174-10183
Hauptverfasser: Soloviev, Alexander V., Lukas, Roger, Donelan, Mark A., Haus, Brian K., Ginis, Isaac
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10183
container_issue 12
container_start_page 10174
container_title Journal of geophysical research. Oceans
container_volume 122
creator Soloviev, Alexander V.
Lukas, Roger
Donelan, Mark A.
Haus, Brian K.
Ginis, Isaac
description Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air‐sea interface under tropical cyclones is subject to the Kelvin‐Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two‐phase environment, which can attenuate gravity‐capillary waves and alter the air‐sea coupling. The unified parameterization of waveform and two‐phase drag based on the physics of the air‐sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force ( U10≈35 m s−1). Remarkably, there is a local Cd minimum—“an aerodynamic drag well”—at around U10≈60 m s−1. The negative slope of the Cd dependence on wind‐speed between approximately 35 and 60 m s−1 favors rapid storm intensification. In contrast, the positive slope of Cd wind‐speed dependence above 60 m s−1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward. Key Points Rapid storm intensification and rapid decline of major tropical cyclones are analyzed in connection with the state of the sea surface The two‐phase environment at the air‐sea interface can result in the observed hysteresis of intensification and decline of tropical cyclones Rapid intensification, decline, and bimodal distribution of maximum intensity can be related to the aerodynamic drag well near 60 m s−1 wind
doi_str_mv 10.1002/2017JC013435
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895706167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895706167</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4908-b1dd5c07a0aa177be8c7acdd264efa6fc8d4f22e80d7b73cd8007650880454543</originalsourceid><addsrcrecordid>eNp9kc9qVDEUh4MottTuXEvAjQtHT3L_JFlJudo6pVBo6_pyJjkXU-4k0-QOZXY-gs_okxhnpqW4aLLICb-Pj8M5jL0V8EkAyM8ShDrvQFR11bxgh1K0ZmakES8fa9UcsOOcb6EcLXRdm9fsoNIgm9q0h-xunvn0k_j1hBPxOGw_Jz79-fX7mpDPw0RpQEsc-SnaKSbuA7_ClXfbLGQ_eIuTj4FjcPvkK9nRh63uJsVVAUbebewYA-Uvb9irAcdMx_v3iP04_XbTfZ9dXJ7Nu5OLGdYG9GwhnGssKAREodSCtFVonZNtTQO2g9WuHqQkDU4tVGWdBlBtA1pD3ZRbHbEPO-8qxbs15alf-mxpHDFQXOdeatMoaEWrCvr-P_Q2rlMo3fXCFKERUleF-rijbIo5Jxr6VfJLTJteQP9vG_3TbRT83V66XizJPcIPsy9AtQPu_UibZ2X9-dlVJ2UrdPUXzxWSDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988091283</pqid></control><display><type>article</type><title>Is the State of the Air‐Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Soloviev, Alexander V. ; Lukas, Roger ; Donelan, Mark A. ; Haus, Brian K. ; Ginis, Isaac</creator><creatorcontrib>Soloviev, Alexander V. ; Lukas, Roger ; Donelan, Mark A. ; Haus, Brian K. ; Ginis, Isaac</creatorcontrib><description>Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air‐sea interface under tropical cyclones is subject to the Kelvin‐Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two‐phase environment, which can attenuate gravity‐capillary waves and alter the air‐sea coupling. The unified parameterization of waveform and two‐phase drag based on the physics of the air‐sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force ( U10≈35 m s−1). Remarkably, there is a local Cd minimum—“an aerodynamic drag well”—at around U10≈60 m s−1. The negative slope of the Cd dependence on wind‐speed between approximately 35 and 60 m s−1 favors rapid storm intensification. In contrast, the positive slope of Cd wind‐speed dependence above 60 m s−1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward. Key Points Rapid storm intensification and rapid decline of major tropical cyclones are analyzed in connection with the state of the sea surface The two‐phase environment at the air‐sea interface can result in the observed hysteresis of intensification and decline of tropical cyclones Rapid intensification, decline, and bimodal distribution of maximum intensity can be related to the aerodynamic drag well near 60 m s−1 wind</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2017JC013435</identifier><identifier>PMID: 38025496</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Aerodynamic drag ; Aerodynamics ; Air ; Air-sea coupling ; Amplification ; Capillary waves ; Computer simulation ; Cyclone dynamics ; Cyclones ; Drag ; Drag coefficient ; Drag coefficients ; Dynamics ; Ejection ; Environmental conditions ; Geophysics ; Gravitation ; Gravity ; Hurricanes ; Instability ; Interface stability ; Laboratory experiments ; Mathematical analysis ; Meteorology ; Numerical simulations ; Parameterization ; Physics ; rapid decline ; rapid intensification ; Sea surface ; Storms ; Temperature (air-sea) ; Tropical climate ; tropical cyclone ; Tropical cyclones ; Tropical depressions ; Tropical meteorology ; Tropical storms ; two‐phase environment ; Vortex dynamics ; Wind speed</subject><ispartof>Journal of geophysical research. Oceans, 2017-12, Vol.122 (12), p.10174-10183</ispartof><rights>2017. The Authors.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4908-b1dd5c07a0aa177be8c7acdd264efa6fc8d4f22e80d7b73cd8007650880454543</citedby><cites>FETCH-LOGICAL-a4908-b1dd5c07a0aa177be8c7acdd264efa6fc8d4f22e80d7b73cd8007650880454543</cites><orcidid>0000-0003-1372-5628 ; 0000-0002-1593-0644 ; 0000-0001-6519-1547 ; 0000-0001-9044-4630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JC013435$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JC013435$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38025496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soloviev, Alexander V.</creatorcontrib><creatorcontrib>Lukas, Roger</creatorcontrib><creatorcontrib>Donelan, Mark A.</creatorcontrib><creatorcontrib>Haus, Brian K.</creatorcontrib><creatorcontrib>Ginis, Isaac</creatorcontrib><title>Is the State of the Air‐Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?</title><title>Journal of geophysical research. Oceans</title><addtitle>J Geophys Res Oceans</addtitle><description>Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air‐sea interface under tropical cyclones is subject to the Kelvin‐Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two‐phase environment, which can attenuate gravity‐capillary waves and alter the air‐sea coupling. The unified parameterization of waveform and two‐phase drag based on the physics of the air‐sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force ( U10≈35 m s−1). Remarkably, there is a local Cd minimum—“an aerodynamic drag well”—at around U10≈60 m s−1. The negative slope of the Cd dependence on wind‐speed between approximately 35 and 60 m s−1 favors rapid storm intensification. In contrast, the positive slope of Cd wind‐speed dependence above 60 m s−1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward. Key Points Rapid storm intensification and rapid decline of major tropical cyclones are analyzed in connection with the state of the sea surface The two‐phase environment at the air‐sea interface can result in the observed hysteresis of intensification and decline of tropical cyclones Rapid intensification, decline, and bimodal distribution of maximum intensity can be related to the aerodynamic drag well near 60 m s−1 wind</description><subject>Aerodynamic drag</subject><subject>Aerodynamics</subject><subject>Air</subject><subject>Air-sea coupling</subject><subject>Amplification</subject><subject>Capillary waves</subject><subject>Computer simulation</subject><subject>Cyclone dynamics</subject><subject>Cyclones</subject><subject>Drag</subject><subject>Drag coefficient</subject><subject>Drag coefficients</subject><subject>Dynamics</subject><subject>Ejection</subject><subject>Environmental conditions</subject><subject>Geophysics</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Hurricanes</subject><subject>Instability</subject><subject>Interface stability</subject><subject>Laboratory experiments</subject><subject>Mathematical analysis</subject><subject>Meteorology</subject><subject>Numerical simulations</subject><subject>Parameterization</subject><subject>Physics</subject><subject>rapid decline</subject><subject>rapid intensification</subject><subject>Sea surface</subject><subject>Storms</subject><subject>Temperature (air-sea)</subject><subject>Tropical climate</subject><subject>tropical cyclone</subject><subject>Tropical cyclones</subject><subject>Tropical depressions</subject><subject>Tropical meteorology</subject><subject>Tropical storms</subject><subject>two‐phase environment</subject><subject>Vortex dynamics</subject><subject>Wind speed</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kc9qVDEUh4MottTuXEvAjQtHT3L_JFlJudo6pVBo6_pyJjkXU-4k0-QOZXY-gs_okxhnpqW4aLLICb-Pj8M5jL0V8EkAyM8ShDrvQFR11bxgh1K0ZmakES8fa9UcsOOcb6EcLXRdm9fsoNIgm9q0h-xunvn0k_j1hBPxOGw_Jz79-fX7mpDPw0RpQEsc-SnaKSbuA7_ClXfbLGQ_eIuTj4FjcPvkK9nRh63uJsVVAUbebewYA-Uvb9irAcdMx_v3iP04_XbTfZ9dXJ7Nu5OLGdYG9GwhnGssKAREodSCtFVonZNtTQO2g9WuHqQkDU4tVGWdBlBtA1pD3ZRbHbEPO-8qxbs15alf-mxpHDFQXOdeatMoaEWrCvr-P_Q2rlMo3fXCFKERUleF-rijbIo5Jxr6VfJLTJteQP9vG_3TbRT83V66XizJPcIPsy9AtQPu_UibZ2X9-dlVJ2UrdPUXzxWSDg</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Soloviev, Alexander V.</creator><creator>Lukas, Roger</creator><creator>Donelan, Mark A.</creator><creator>Haus, Brian K.</creator><creator>Ginis, Isaac</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1372-5628</orcidid><orcidid>https://orcid.org/0000-0002-1593-0644</orcidid><orcidid>https://orcid.org/0000-0001-6519-1547</orcidid><orcidid>https://orcid.org/0000-0001-9044-4630</orcidid></search><sort><creationdate>201712</creationdate><title>Is the State of the Air‐Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?</title><author>Soloviev, Alexander V. ; Lukas, Roger ; Donelan, Mark A. ; Haus, Brian K. ; Ginis, Isaac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4908-b1dd5c07a0aa177be8c7acdd264efa6fc8d4f22e80d7b73cd8007650880454543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamic drag</topic><topic>Aerodynamics</topic><topic>Air</topic><topic>Air-sea coupling</topic><topic>Amplification</topic><topic>Capillary waves</topic><topic>Computer simulation</topic><topic>Cyclone dynamics</topic><topic>Cyclones</topic><topic>Drag</topic><topic>Drag coefficient</topic><topic>Drag coefficients</topic><topic>Dynamics</topic><topic>Ejection</topic><topic>Environmental conditions</topic><topic>Geophysics</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Hurricanes</topic><topic>Instability</topic><topic>Interface stability</topic><topic>Laboratory experiments</topic><topic>Mathematical analysis</topic><topic>Meteorology</topic><topic>Numerical simulations</topic><topic>Parameterization</topic><topic>Physics</topic><topic>rapid decline</topic><topic>rapid intensification</topic><topic>Sea surface</topic><topic>Storms</topic><topic>Temperature (air-sea)</topic><topic>Tropical climate</topic><topic>tropical cyclone</topic><topic>Tropical cyclones</topic><topic>Tropical depressions</topic><topic>Tropical meteorology</topic><topic>Tropical storms</topic><topic>two‐phase environment</topic><topic>Vortex dynamics</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soloviev, Alexander V.</creatorcontrib><creatorcontrib>Lukas, Roger</creatorcontrib><creatorcontrib>Donelan, Mark A.</creatorcontrib><creatorcontrib>Haus, Brian K.</creatorcontrib><creatorcontrib>Ginis, Isaac</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soloviev, Alexander V.</au><au>Lukas, Roger</au><au>Donelan, Mark A.</au><au>Haus, Brian K.</au><au>Ginis, Isaac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is the State of the Air‐Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><addtitle>J Geophys Res Oceans</addtitle><date>2017-12</date><risdate>2017</risdate><volume>122</volume><issue>12</issue><spage>10174</spage><epage>10183</epage><pages>10174-10183</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air‐sea interface under tropical cyclones is subject to the Kelvin‐Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two‐phase environment, which can attenuate gravity‐capillary waves and alter the air‐sea coupling. The unified parameterization of waveform and two‐phase drag based on the physics of the air‐sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force ( U10≈35 m s−1). Remarkably, there is a local Cd minimum—“an aerodynamic drag well”—at around U10≈60 m s−1. The negative slope of the Cd dependence on wind‐speed between approximately 35 and 60 m s−1 favors rapid storm intensification. In contrast, the positive slope of Cd wind‐speed dependence above 60 m s−1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward. Key Points Rapid storm intensification and rapid decline of major tropical cyclones are analyzed in connection with the state of the sea surface The two‐phase environment at the air‐sea interface can result in the observed hysteresis of intensification and decline of tropical cyclones Rapid intensification, decline, and bimodal distribution of maximum intensity can be related to the aerodynamic drag well near 60 m s−1 wind</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>38025496</pmid><doi>10.1002/2017JC013435</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1372-5628</orcidid><orcidid>https://orcid.org/0000-0002-1593-0644</orcidid><orcidid>https://orcid.org/0000-0001-6519-1547</orcidid><orcidid>https://orcid.org/0000-0001-9044-4630</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2017-12, Vol.122 (12), p.10174-10183
issn 2169-9275
2169-9291
language eng
recordid cdi_proquest_miscellaneous_2895706167
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Aerodynamic drag
Aerodynamics
Air
Air-sea coupling
Amplification
Capillary waves
Computer simulation
Cyclone dynamics
Cyclones
Drag
Drag coefficient
Drag coefficients
Dynamics
Ejection
Environmental conditions
Geophysics
Gravitation
Gravity
Hurricanes
Instability
Interface stability
Laboratory experiments
Mathematical analysis
Meteorology
Numerical simulations
Parameterization
Physics
rapid decline
rapid intensification
Sea surface
Storms
Temperature (air-sea)
Tropical climate
tropical cyclone
Tropical cyclones
Tropical depressions
Tropical meteorology
Tropical storms
two‐phase environment
Vortex dynamics
Wind speed
title Is the State of the Air‐Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20the%20State%20of%20the%20Air%E2%80%90Sea%20Interface%20a%20Factor%20in%20Rapid%20Intensification%20and%20Rapid%20Decline%20of%20Tropical%20Cyclones?&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Soloviev,%20Alexander%20V.&rft.date=2017-12&rft.volume=122&rft.issue=12&rft.spage=10174&rft.epage=10183&rft.pages=10174-10183&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2017JC013435&rft_dat=%3Cproquest_cross%3E2895706167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988091283&rft_id=info:pmid/38025496&rfr_iscdi=true