MicroPET imaging with nonconventional isotopes

The utilization of new positron emitting isotopes for position emission tomography (PET) imaging raises several questions about their ability to provide images of good quality and to perform accurate quantification. This issue is even more pertinent when using high-resolution scanners designed for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2002-10, Vol.49 (5), p.2119-2126
Hauptverfasser: Laforest, R., Rowland, D.J., Welch, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2126
container_issue 5
container_start_page 2119
container_title IEEE transactions on nuclear science
container_volume 49
creator Laforest, R.
Rowland, D.J.
Welch, M.J.
description The utilization of new positron emitting isotopes for position emission tomography (PET) imaging raises several questions about their ability to provide images of good quality and to perform accurate quantification. This issue is even more pertinent when using high-resolution scanners designed for the imaging of small animals. At Washington University, we are currently producing a whole array of positron emitters; some of them, like Ga-66 and Br-76, emit high-energy positrons and prompt gamma rays that affect spatial resolution and increase the random coincidence contribution. We have now started to evaluate these isotopes in terms of their ability to perform high-quality imaging. Spatial resolution measurements were evaluated using the Concorde MicroSystem Inc. microPET-R4 camera. Electron transport calculations have been performed and compared with experimental data. They revealed that for this camera, the detector size is still the limiting factor on resolution for isotopes emitting low-energy positrons like F-18 and Cu-64. The transaxial resolution was measured to be around 2 mm at the center of the field of view (FOV) for these isotopes. The dominant factor becomes the positron range for other isotopes like Cu-60 and Tc-94 m, with transaxial resolution of 3.5 and 4.3 mm, respectively. Due to the long tail of the positron range distribution; a strong contrast reduction is observed. In this paper, experimental data on spatial resolution will be presented for a number of nonconventional PET isotopes, and consequences on image quality will be discussed.
doi_str_mv 10.1109/TNS.2002.803685
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28953765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1046799</ieee_id><sourcerecordid>28953765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-730a397490b1be396973337ccc56fcbbd5e679cbfecb6c6df200cba99de737d43</originalsourceid><addsrcrecordid>eNqN0c1LwzAYBvAgCs7p2YOX4kFP7ZLm8z3KmB_gFzjPoU3TmdE1s-kU_3sz6kE8yE4h8HtfXp4HoVOCM0IwTOaPL1mOcZ4pTIXie2hEOFcp4VLtoxHGRKXAAA7RUQjL-GUc8xHKHpzp_PNsnrhVsXDtIvl0_VvS-tb49sO2vfNt0SQu-N6vbThGB3XRBHvy847R6_VsPr1N759u7qZX96lhhPSppLigIBngkpSWggBJKZXGGC5qU5YVt0KCKWtrSmFEVcfDTVkAVFZSWTE6RpfD3nXn3zc29HrlgrFNU7TWb4IGLEFgxmiUF__KXAGnUvAdoMIkZ7tAyilwFeH5H7j0my7GFe8DirFgZIsmA4oxh9DZWq-7GHX3pQnW2-J0LE5vi9NDcXHibJhw1tpfmsXIgH4Dpo-Sjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993006418</pqid></control><display><type>article</type><title>MicroPET imaging with nonconventional isotopes</title><source>IEEE Electronic Library (IEL)</source><creator>Laforest, R. ; Rowland, D.J. ; Welch, M.J.</creator><creatorcontrib>Laforest, R. ; Rowland, D.J. ; Welch, M.J.</creatorcontrib><description>The utilization of new positron emitting isotopes for position emission tomography (PET) imaging raises several questions about their ability to provide images of good quality and to perform accurate quantification. This issue is even more pertinent when using high-resolution scanners designed for the imaging of small animals. At Washington University, we are currently producing a whole array of positron emitters; some of them, like Ga-66 and Br-76, emit high-energy positrons and prompt gamma rays that affect spatial resolution and increase the random coincidence contribution. We have now started to evaluate these isotopes in terms of their ability to perform high-quality imaging. Spatial resolution measurements were evaluated using the Concorde MicroSystem Inc. microPET-R4 camera. Electron transport calculations have been performed and compared with experimental data. They revealed that for this camera, the detector size is still the limiting factor on resolution for isotopes emitting low-energy positrons like F-18 and Cu-64. The transaxial resolution was measured to be around 2 mm at the center of the field of view (FOV) for these isotopes. The dominant factor becomes the positron range for other isotopes like Cu-60 and Tc-94 m, with transaxial resolution of 3.5 and 4.3 mm, respectively. Due to the long tail of the positron range distribution; a strong contrast reduction is observed. In this paper, experimental data on spatial resolution will be presented for a number of nonconventional PET isotopes, and consequences on image quality will be discussed.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2002.803685</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Animals ; Cameras ; Electrons ; Emittance ; Gamma rays ; High-resolution imaging ; Imaging ; Isotopes ; Medical imaging ; Optical imaging ; Performance evaluation ; Positron emission ; Positron emission tomography ; Spatial resolution ; Tomography</subject><ispartof>IEEE transactions on nuclear science, 2002-10, Vol.49 (5), p.2119-2126</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-730a397490b1be396973337ccc56fcbbd5e679cbfecb6c6df200cba99de737d43</citedby><cites>FETCH-LOGICAL-c411t-730a397490b1be396973337ccc56fcbbd5e679cbfecb6c6df200cba99de737d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1046799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1046799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Laforest, R.</creatorcontrib><creatorcontrib>Rowland, D.J.</creatorcontrib><creatorcontrib>Welch, M.J.</creatorcontrib><title>MicroPET imaging with nonconventional isotopes</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The utilization of new positron emitting isotopes for position emission tomography (PET) imaging raises several questions about their ability to provide images of good quality and to perform accurate quantification. This issue is even more pertinent when using high-resolution scanners designed for the imaging of small animals. At Washington University, we are currently producing a whole array of positron emitters; some of them, like Ga-66 and Br-76, emit high-energy positrons and prompt gamma rays that affect spatial resolution and increase the random coincidence contribution. We have now started to evaluate these isotopes in terms of their ability to perform high-quality imaging. Spatial resolution measurements were evaluated using the Concorde MicroSystem Inc. microPET-R4 camera. Electron transport calculations have been performed and compared with experimental data. They revealed that for this camera, the detector size is still the limiting factor on resolution for isotopes emitting low-energy positrons like F-18 and Cu-64. The transaxial resolution was measured to be around 2 mm at the center of the field of view (FOV) for these isotopes. The dominant factor becomes the positron range for other isotopes like Cu-60 and Tc-94 m, with transaxial resolution of 3.5 and 4.3 mm, respectively. Due to the long tail of the positron range distribution; a strong contrast reduction is observed. In this paper, experimental data on spatial resolution will be presented for a number of nonconventional PET isotopes, and consequences on image quality will be discussed.</description><subject>Animals</subject><subject>Cameras</subject><subject>Electrons</subject><subject>Emittance</subject><subject>Gamma rays</subject><subject>High-resolution imaging</subject><subject>Imaging</subject><subject>Isotopes</subject><subject>Medical imaging</subject><subject>Optical imaging</subject><subject>Performance evaluation</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Spatial resolution</subject><subject>Tomography</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0c1LwzAYBvAgCs7p2YOX4kFP7ZLm8z3KmB_gFzjPoU3TmdE1s-kU_3sz6kE8yE4h8HtfXp4HoVOCM0IwTOaPL1mOcZ4pTIXie2hEOFcp4VLtoxHGRKXAAA7RUQjL-GUc8xHKHpzp_PNsnrhVsXDtIvl0_VvS-tb49sO2vfNt0SQu-N6vbThGB3XRBHvy847R6_VsPr1N759u7qZX96lhhPSppLigIBngkpSWggBJKZXGGC5qU5YVt0KCKWtrSmFEVcfDTVkAVFZSWTE6RpfD3nXn3zc29HrlgrFNU7TWb4IGLEFgxmiUF__KXAGnUvAdoMIkZ7tAyilwFeH5H7j0my7GFe8DirFgZIsmA4oxh9DZWq-7GHX3pQnW2-J0LE5vi9NDcXHibJhw1tpfmsXIgH4Dpo-Sjg</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Laforest, R.</creator><creator>Rowland, D.J.</creator><creator>Welch, M.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20021001</creationdate><title>MicroPET imaging with nonconventional isotopes</title><author>Laforest, R. ; Rowland, D.J. ; Welch, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-730a397490b1be396973337ccc56fcbbd5e679cbfecb6c6df200cba99de737d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Cameras</topic><topic>Electrons</topic><topic>Emittance</topic><topic>Gamma rays</topic><topic>High-resolution imaging</topic><topic>Imaging</topic><topic>Isotopes</topic><topic>Medical imaging</topic><topic>Optical imaging</topic><topic>Performance evaluation</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Spatial resolution</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laforest, R.</creatorcontrib><creatorcontrib>Rowland, D.J.</creatorcontrib><creatorcontrib>Welch, M.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laforest, R.</au><au>Rowland, D.J.</au><au>Welch, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroPET imaging with nonconventional isotopes</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2002-10-01</date><risdate>2002</risdate><volume>49</volume><issue>5</issue><spage>2119</spage><epage>2126</epage><pages>2119-2126</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The utilization of new positron emitting isotopes for position emission tomography (PET) imaging raises several questions about their ability to provide images of good quality and to perform accurate quantification. This issue is even more pertinent when using high-resolution scanners designed for the imaging of small animals. At Washington University, we are currently producing a whole array of positron emitters; some of them, like Ga-66 and Br-76, emit high-energy positrons and prompt gamma rays that affect spatial resolution and increase the random coincidence contribution. We have now started to evaluate these isotopes in terms of their ability to perform high-quality imaging. Spatial resolution measurements were evaluated using the Concorde MicroSystem Inc. microPET-R4 camera. Electron transport calculations have been performed and compared with experimental data. They revealed that for this camera, the detector size is still the limiting factor on resolution for isotopes emitting low-energy positrons like F-18 and Cu-64. The transaxial resolution was measured to be around 2 mm at the center of the field of view (FOV) for these isotopes. The dominant factor becomes the positron range for other isotopes like Cu-60 and Tc-94 m, with transaxial resolution of 3.5 and 4.3 mm, respectively. Due to the long tail of the positron range distribution; a strong contrast reduction is observed. In this paper, experimental data on spatial resolution will be presented for a number of nonconventional PET isotopes, and consequences on image quality will be discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2002.803685</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2002-10, Vol.49 (5), p.2119-2126
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_28953765
source IEEE Electronic Library (IEL)
subjects Animals
Cameras
Electrons
Emittance
Gamma rays
High-resolution imaging
Imaging
Isotopes
Medical imaging
Optical imaging
Performance evaluation
Positron emission
Positron emission tomography
Spatial resolution
Tomography
title MicroPET imaging with nonconventional isotopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroPET%20imaging%20with%20nonconventional%20isotopes&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Laforest,%20R.&rft.date=2002-10-01&rft.volume=49&rft.issue=5&rft.spage=2119&rft.epage=2126&rft.pages=2119-2126&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2002.803685&rft_dat=%3Cproquest_RIE%3E28953765%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993006418&rft_id=info:pmid/&rft_ieee_id=1046799&rfr_iscdi=true