Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement
Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement model...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2024-04, Vol.43 (4), p.1323-1336 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1336 |
---|---|
container_issue | 4 |
container_start_page | 1323 |
container_title | IEEE transactions on medical imaging |
container_volume | 43 |
creator | Li, Heng Lin, Ziqin Qiu, Zhongxi Li, Zinan Niu, Ke Guo, Na Fu, Huazhu Hu, Yan Liu, Jiang |
description | Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement models have been developed, these models require a well pre-training before deployment, while failing to take advantage of the potential value of inference data after deployment. In this paper, we raise an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME), which adapts and optimizes enhancement models using test data in the inference phase. A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data. Then a teacher-student model is initialized with the source model and conducts source-free unsupervised domain adaptation (SFUDA) by knowledge distillation with the test data. Additionally, a pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks. Experiments were implemented on ten datasets from three medical image modalities to validate the advantage of the proposed algorithm, and setting analysis and ablation studies were also carried out to interpret the effectiveness of SAME. The remarkable enhancement performance and benefits for downstream tasks demonstrate the potential and generalizability of SAME. The code is available at https://github.com/liamheng/Annotation-free-Medical-Image-Enhancement . |
doi_str_mv | 10.1109/TMI.2023.3335651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895261871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330609</ieee_id><sourcerecordid>3031395788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-333bd15ca389090217c4c52e30e580989ae7f3aadd19b7c82199f79f2a6f9c2e3</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpaJw09x5CEeSSyzojydqVejNu0hpscmgCuQlZO5so7GpdabfQ_z5y7IaS0zDwe28-HiFfGEwZA311t15OOXAxFULIUrIPZMKkVAWXs4ePZAK8UgVAyY_JSUrPAGwmQX8ix0IBk6WqJiRchycbnA-P1Iaazmu7HXaND3R4QrpoffDuG_3Vj9FhcRMR6X1I4xbjH5-wpt_7zmb2VWcH3wfa9JGusfbOtnTZ2Uek-xHYYRg-k6PGtgnPDvWU3N9c3y1-FqvbH8vFfFU4AWwo8jmbmklnhdKggbPKzZzkKAClAq20xaoR1tY105vKKc60birdcFs22mXulFzufbex_z1iGkznk8O2tQH7MRmutOQlUxXL6MU79DkfG_J2RoBgQstKqUzBnnKxTyliY7bRdzb-NQzMLguTszC7LMwhiyz5ejAeNx3Wb4J_z8_A-R7wiPifnxBQghYvlpyMeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031395788</pqid></control><display><type>article</type><title>Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Heng ; Lin, Ziqin ; Qiu, Zhongxi ; Li, Zinan ; Niu, Ke ; Guo, Na ; Fu, Huazhu ; Hu, Yan ; Liu, Jiang</creator><creatorcontrib>Li, Heng ; Lin, Ziqin ; Qiu, Zhongxi ; Li, Zinan ; Niu, Ke ; Guo, Na ; Fu, Huazhu ; Hu, Yan ; Liu, Jiang</creatorcontrib><description>Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement models have been developed, these models require a well pre-training before deployment, while failing to take advantage of the potential value of inference data after deployment. In this paper, we raise an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME), which adapts and optimizes enhancement models using test data in the inference phase. A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data. Then a teacher-student model is initialized with the source model and conducts source-free unsupervised domain adaptation (SFUDA) by knowledge distillation with the test data. Additionally, a pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks. Experiments were implemented on ten datasets from three medical image modalities to validate the advantage of the proposed algorithm, and setting analysis and ablation studies were also carried out to interpret the effectiveness of SAME. The remarkable enhancement performance and benefits for downstream tasks demonstrate the potential and generalizability of SAME. The code is available at https://github.com/liamheng/Annotation-free-Medical-Image-Enhancement .</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2023.3335651</identifier><identifier>PMID: 38015687</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Ablation ; Adaptation ; Adaptation models ; Algorithms ; Annotations ; Biomedical imaging ; Data collection ; Data models ; Distillation ; Humans ; Image degradation ; Image Enhancement ; Image Processing, Computer-Assisted ; Inference ; knowledge distillation ; Medical diagnostic imaging ; Medical image enhancement ; Medical imaging ; pseudo-label selection ; source-free unsupervised domain adaptation ; Training</subject><ispartof>IEEE transactions on medical imaging, 2024-04, Vol.43 (4), p.1323-1336</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-333bd15ca389090217c4c52e30e580989ae7f3aadd19b7c82199f79f2a6f9c2e3</cites><orcidid>0009-0003-8744-3110 ; 0000-0002-7663-3096 ; 0000-0002-9702-5524 ; 0000-0001-6281-6505 ; 0000-0001-7754-7141 ; 0000-0001-9675-5341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10330609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38015687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Lin, Ziqin</creatorcontrib><creatorcontrib>Qiu, Zhongxi</creatorcontrib><creatorcontrib>Li, Zinan</creatorcontrib><creatorcontrib>Niu, Ke</creatorcontrib><creatorcontrib>Guo, Na</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><creatorcontrib>Hu, Yan</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><title>Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement models have been developed, these models require a well pre-training before deployment, while failing to take advantage of the potential value of inference data after deployment. In this paper, we raise an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME), which adapts and optimizes enhancement models using test data in the inference phase. A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data. Then a teacher-student model is initialized with the source model and conducts source-free unsupervised domain adaptation (SFUDA) by knowledge distillation with the test data. Additionally, a pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks. Experiments were implemented on ten datasets from three medical image modalities to validate the advantage of the proposed algorithm, and setting analysis and ablation studies were also carried out to interpret the effectiveness of SAME. The remarkable enhancement performance and benefits for downstream tasks demonstrate the potential and generalizability of SAME. The code is available at https://github.com/liamheng/Annotation-free-Medical-Image-Enhancement .</description><subject>Ablation</subject><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Biomedical imaging</subject><subject>Data collection</subject><subject>Data models</subject><subject>Distillation</subject><subject>Humans</subject><subject>Image degradation</subject><subject>Image Enhancement</subject><subject>Image Processing, Computer-Assisted</subject><subject>Inference</subject><subject>knowledge distillation</subject><subject>Medical diagnostic imaging</subject><subject>Medical image enhancement</subject><subject>Medical imaging</subject><subject>pseudo-label selection</subject><subject>source-free unsupervised domain adaptation</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1rGzEQxUVpaJw09x5CEeSSyzojydqVejNu0hpscmgCuQlZO5so7GpdabfQ_z5y7IaS0zDwe28-HiFfGEwZA311t15OOXAxFULIUrIPZMKkVAWXs4ePZAK8UgVAyY_JSUrPAGwmQX8ix0IBk6WqJiRchycbnA-P1Iaazmu7HXaND3R4QrpoffDuG_3Vj9FhcRMR6X1I4xbjH5-wpt_7zmb2VWcH3wfa9JGusfbOtnTZ2Uek-xHYYRg-k6PGtgnPDvWU3N9c3y1-FqvbH8vFfFU4AWwo8jmbmklnhdKggbPKzZzkKAClAq20xaoR1tY105vKKc60birdcFs22mXulFzufbex_z1iGkznk8O2tQH7MRmutOQlUxXL6MU79DkfG_J2RoBgQstKqUzBnnKxTyliY7bRdzb-NQzMLguTszC7LMwhiyz5ejAeNx3Wb4J_z8_A-R7wiPifnxBQghYvlpyMeg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Li, Heng</creator><creator>Lin, Ziqin</creator><creator>Qiu, Zhongxi</creator><creator>Li, Zinan</creator><creator>Niu, Ke</creator><creator>Guo, Na</creator><creator>Fu, Huazhu</creator><creator>Hu, Yan</creator><creator>Liu, Jiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-8744-3110</orcidid><orcidid>https://orcid.org/0000-0002-7663-3096</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0001-6281-6505</orcidid><orcidid>https://orcid.org/0000-0001-7754-7141</orcidid><orcidid>https://orcid.org/0000-0001-9675-5341</orcidid></search><sort><creationdate>20240401</creationdate><title>Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement</title><author>Li, Heng ; Lin, Ziqin ; Qiu, Zhongxi ; Li, Zinan ; Niu, Ke ; Guo, Na ; Fu, Huazhu ; Hu, Yan ; Liu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-333bd15ca389090217c4c52e30e580989ae7f3aadd19b7c82199f79f2a6f9c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Biomedical imaging</topic><topic>Data collection</topic><topic>Data models</topic><topic>Distillation</topic><topic>Humans</topic><topic>Image degradation</topic><topic>Image Enhancement</topic><topic>Image Processing, Computer-Assisted</topic><topic>Inference</topic><topic>knowledge distillation</topic><topic>Medical diagnostic imaging</topic><topic>Medical image enhancement</topic><topic>Medical imaging</topic><topic>pseudo-label selection</topic><topic>source-free unsupervised domain adaptation</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Lin, Ziqin</creatorcontrib><creatorcontrib>Qiu, Zhongxi</creatorcontrib><creatorcontrib>Li, Zinan</creatorcontrib><creatorcontrib>Niu, Ke</creatorcontrib><creatorcontrib>Guo, Na</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><creatorcontrib>Hu, Yan</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Heng</au><au>Lin, Ziqin</au><au>Qiu, Zhongxi</au><au>Li, Zinan</au><au>Niu, Ke</au><au>Guo, Na</au><au>Fu, Huazhu</au><au>Hu, Yan</au><au>Liu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><spage>1323</spage><epage>1336</epage><pages>1323-1336</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement models have been developed, these models require a well pre-training before deployment, while failing to take advantage of the potential value of inference data after deployment. In this paper, we raise an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME), which adapts and optimizes enhancement models using test data in the inference phase. A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data. Then a teacher-student model is initialized with the source model and conducts source-free unsupervised domain adaptation (SFUDA) by knowledge distillation with the test data. Additionally, a pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks. Experiments were implemented on ten datasets from three medical image modalities to validate the advantage of the proposed algorithm, and setting analysis and ablation studies were also carried out to interpret the effectiveness of SAME. The remarkable enhancement performance and benefits for downstream tasks demonstrate the potential and generalizability of SAME. The code is available at https://github.com/liamheng/Annotation-free-Medical-Image-Enhancement .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38015687</pmid><doi>10.1109/TMI.2023.3335651</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0003-8744-3110</orcidid><orcidid>https://orcid.org/0000-0002-7663-3096</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0001-6281-6505</orcidid><orcidid>https://orcid.org/0000-0001-7754-7141</orcidid><orcidid>https://orcid.org/0000-0001-9675-5341</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2024-04, Vol.43 (4), p.1323-1336 |
issn | 0278-0062 1558-254X 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_2895261871 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation Adaptation Adaptation models Algorithms Annotations Biomedical imaging Data collection Data models Distillation Humans Image degradation Image Enhancement Image Processing, Computer-Assisted Inference knowledge distillation Medical diagnostic imaging Medical image enhancement Medical imaging pseudo-label selection source-free unsupervised domain adaptation Training |
title | Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20and%20Adapting%20in%20the%20Clinic:%20Source-Free%20Unsupervised%20Domain%20Adaptation%20for%20Medical%20Image%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Heng&rft.date=2024-04-01&rft.volume=43&rft.issue=4&rft.spage=1323&rft.epage=1336&rft.pages=1323-1336&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2023.3335651&rft_dat=%3Cproquest_RIE%3E3031395788%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031395788&rft_id=info:pmid/38015687&rft_ieee_id=10330609&rfr_iscdi=true |