Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement

Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2024-04, Vol.43 (4), p.1323-1336
Hauptverfasser: Li, Heng, Lin, Ziqin, Qiu, Zhongxi, Li, Zinan, Niu, Ke, Guo, Na, Fu, Huazhu, Hu, Yan, Liu, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1336
container_issue 4
container_start_page 1323
container_title IEEE transactions on medical imaging
container_volume 43
creator Li, Heng
Lin, Ziqin
Qiu, Zhongxi
Li, Zinan
Niu, Ke
Guo, Na
Fu, Huazhu
Hu, Yan
Liu, Jiang
description Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement models have been developed, these models require a well pre-training before deployment, while failing to take advantage of the potential value of inference data after deployment. In this paper, we raise an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME), which adapts and optimizes enhancement models using test data in the inference phase. A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data. Then a teacher-student model is initialized with the source model and conducts source-free unsupervised domain adaptation (SFUDA) by knowledge distillation with the test data. Additionally, a pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks. Experiments were implemented on ten datasets from three medical image modalities to validate the advantage of the proposed algorithm, and setting analysis and ablation studies were also carried out to interpret the effectiveness of SAME. The remarkable enhancement performance and benefits for downstream tasks demonstrate the potential and generalizability of SAME. The code is available at https://github.com/liamheng/Annotation-free-Medical-Image-Enhancement .
doi_str_mv 10.1109/TMI.2023.3335651
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895261871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330609</ieee_id><sourcerecordid>3031395788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-333bd15ca389090217c4c52e30e580989ae7f3aadd19b7c82199f79f2a6f9c2e3</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpaJw09x5CEeSSyzojydqVejNu0hpscmgCuQlZO5so7GpdabfQ_z5y7IaS0zDwe28-HiFfGEwZA311t15OOXAxFULIUrIPZMKkVAWXs4ePZAK8UgVAyY_JSUrPAGwmQX8ix0IBk6WqJiRchycbnA-P1Iaazmu7HXaND3R4QrpoffDuG_3Vj9FhcRMR6X1I4xbjH5-wpt_7zmb2VWcH3wfa9JGusfbOtnTZ2Uek-xHYYRg-k6PGtgnPDvWU3N9c3y1-FqvbH8vFfFU4AWwo8jmbmklnhdKggbPKzZzkKAClAq20xaoR1tY105vKKc60birdcFs22mXulFzufbex_z1iGkznk8O2tQH7MRmutOQlUxXL6MU79DkfG_J2RoBgQstKqUzBnnKxTyliY7bRdzb-NQzMLguTszC7LMwhiyz5ejAeNx3Wb4J_z8_A-R7wiPifnxBQghYvlpyMeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031395788</pqid></control><display><type>article</type><title>Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Heng ; Lin, Ziqin ; Qiu, Zhongxi ; Li, Zinan ; Niu, Ke ; Guo, Na ; Fu, Huazhu ; Hu, Yan ; Liu, Jiang</creator><creatorcontrib>Li, Heng ; Lin, Ziqin ; Qiu, Zhongxi ; Li, Zinan ; Niu, Ke ; Guo, Na ; Fu, Huazhu ; Hu, Yan ; Liu, Jiang</creatorcontrib><description>Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement models have been developed, these models require a well pre-training before deployment, while failing to take advantage of the potential value of inference data after deployment. In this paper, we raise an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME), which adapts and optimizes enhancement models using test data in the inference phase. A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data. Then a teacher-student model is initialized with the source model and conducts source-free unsupervised domain adaptation (SFUDA) by knowledge distillation with the test data. Additionally, a pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks. Experiments were implemented on ten datasets from three medical image modalities to validate the advantage of the proposed algorithm, and setting analysis and ablation studies were also carried out to interpret the effectiveness of SAME. The remarkable enhancement performance and benefits for downstream tasks demonstrate the potential and generalizability of SAME. The code is available at https://github.com/liamheng/Annotation-free-Medical-Image-Enhancement .</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2023.3335651</identifier><identifier>PMID: 38015687</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Ablation ; Adaptation ; Adaptation models ; Algorithms ; Annotations ; Biomedical imaging ; Data collection ; Data models ; Distillation ; Humans ; Image degradation ; Image Enhancement ; Image Processing, Computer-Assisted ; Inference ; knowledge distillation ; Medical diagnostic imaging ; Medical image enhancement ; Medical imaging ; pseudo-label selection ; source-free unsupervised domain adaptation ; Training</subject><ispartof>IEEE transactions on medical imaging, 2024-04, Vol.43 (4), p.1323-1336</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-333bd15ca389090217c4c52e30e580989ae7f3aadd19b7c82199f79f2a6f9c2e3</cites><orcidid>0009-0003-8744-3110 ; 0000-0002-7663-3096 ; 0000-0002-9702-5524 ; 0000-0001-6281-6505 ; 0000-0001-7754-7141 ; 0000-0001-9675-5341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10330609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38015687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Lin, Ziqin</creatorcontrib><creatorcontrib>Qiu, Zhongxi</creatorcontrib><creatorcontrib>Li, Zinan</creatorcontrib><creatorcontrib>Niu, Ke</creatorcontrib><creatorcontrib>Guo, Na</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><creatorcontrib>Hu, Yan</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><title>Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement models have been developed, these models require a well pre-training before deployment, while failing to take advantage of the potential value of inference data after deployment. In this paper, we raise an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME), which adapts and optimizes enhancement models using test data in the inference phase. A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data. Then a teacher-student model is initialized with the source model and conducts source-free unsupervised domain adaptation (SFUDA) by knowledge distillation with the test data. Additionally, a pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks. Experiments were implemented on ten datasets from three medical image modalities to validate the advantage of the proposed algorithm, and setting analysis and ablation studies were also carried out to interpret the effectiveness of SAME. The remarkable enhancement performance and benefits for downstream tasks demonstrate the potential and generalizability of SAME. The code is available at https://github.com/liamheng/Annotation-free-Medical-Image-Enhancement .</description><subject>Ablation</subject><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Biomedical imaging</subject><subject>Data collection</subject><subject>Data models</subject><subject>Distillation</subject><subject>Humans</subject><subject>Image degradation</subject><subject>Image Enhancement</subject><subject>Image Processing, Computer-Assisted</subject><subject>Inference</subject><subject>knowledge distillation</subject><subject>Medical diagnostic imaging</subject><subject>Medical image enhancement</subject><subject>Medical imaging</subject><subject>pseudo-label selection</subject><subject>source-free unsupervised domain adaptation</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1rGzEQxUVpaJw09x5CEeSSyzojydqVejNu0hpscmgCuQlZO5so7GpdabfQ_z5y7IaS0zDwe28-HiFfGEwZA311t15OOXAxFULIUrIPZMKkVAWXs4ePZAK8UgVAyY_JSUrPAGwmQX8ix0IBk6WqJiRchycbnA-P1Iaazmu7HXaND3R4QrpoffDuG_3Vj9FhcRMR6X1I4xbjH5-wpt_7zmb2VWcH3wfa9JGusfbOtnTZ2Uek-xHYYRg-k6PGtgnPDvWU3N9c3y1-FqvbH8vFfFU4AWwo8jmbmklnhdKggbPKzZzkKAClAq20xaoR1tY105vKKc60birdcFs22mXulFzufbex_z1iGkznk8O2tQH7MRmutOQlUxXL6MU79DkfG_J2RoBgQstKqUzBnnKxTyliY7bRdzb-NQzMLguTszC7LMwhiyz5ejAeNx3Wb4J_z8_A-R7wiPifnxBQghYvlpyMeg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Li, Heng</creator><creator>Lin, Ziqin</creator><creator>Qiu, Zhongxi</creator><creator>Li, Zinan</creator><creator>Niu, Ke</creator><creator>Guo, Na</creator><creator>Fu, Huazhu</creator><creator>Hu, Yan</creator><creator>Liu, Jiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-8744-3110</orcidid><orcidid>https://orcid.org/0000-0002-7663-3096</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0001-6281-6505</orcidid><orcidid>https://orcid.org/0000-0001-7754-7141</orcidid><orcidid>https://orcid.org/0000-0001-9675-5341</orcidid></search><sort><creationdate>20240401</creationdate><title>Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement</title><author>Li, Heng ; Lin, Ziqin ; Qiu, Zhongxi ; Li, Zinan ; Niu, Ke ; Guo, Na ; Fu, Huazhu ; Hu, Yan ; Liu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-333bd15ca389090217c4c52e30e580989ae7f3aadd19b7c82199f79f2a6f9c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Biomedical imaging</topic><topic>Data collection</topic><topic>Data models</topic><topic>Distillation</topic><topic>Humans</topic><topic>Image degradation</topic><topic>Image Enhancement</topic><topic>Image Processing, Computer-Assisted</topic><topic>Inference</topic><topic>knowledge distillation</topic><topic>Medical diagnostic imaging</topic><topic>Medical image enhancement</topic><topic>Medical imaging</topic><topic>pseudo-label selection</topic><topic>source-free unsupervised domain adaptation</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Lin, Ziqin</creatorcontrib><creatorcontrib>Qiu, Zhongxi</creatorcontrib><creatorcontrib>Li, Zinan</creatorcontrib><creatorcontrib>Niu, Ke</creatorcontrib><creatorcontrib>Guo, Na</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><creatorcontrib>Hu, Yan</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Heng</au><au>Lin, Ziqin</au><au>Qiu, Zhongxi</au><au>Li, Zinan</au><au>Niu, Ke</au><au>Guo, Na</au><au>Fu, Huazhu</au><au>Hu, Yan</au><au>Liu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><spage>1323</spage><epage>1336</epage><pages>1323-1336</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Medical imaging provides many valuable clues involving anatomical structure and pathological characteristics. However, image degradation is a common issue in clinical practice, which can adversely impact the observation and diagnosis by physicians and algorithms. Although extensive enhancement models have been developed, these models require a well pre-training before deployment, while failing to take advantage of the potential value of inference data after deployment. In this paper, we raise an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME), which adapts and optimizes enhancement models using test data in the inference phase. A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data. Then a teacher-student model is initialized with the source model and conducts source-free unsupervised domain adaptation (SFUDA) by knowledge distillation with the test data. Additionally, a pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks. Experiments were implemented on ten datasets from three medical image modalities to validate the advantage of the proposed algorithm, and setting analysis and ablation studies were also carried out to interpret the effectiveness of SAME. The remarkable enhancement performance and benefits for downstream tasks demonstrate the potential and generalizability of SAME. The code is available at https://github.com/liamheng/Annotation-free-Medical-Image-Enhancement .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38015687</pmid><doi>10.1109/TMI.2023.3335651</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0003-8744-3110</orcidid><orcidid>https://orcid.org/0000-0002-7663-3096</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0001-6281-6505</orcidid><orcidid>https://orcid.org/0000-0001-7754-7141</orcidid><orcidid>https://orcid.org/0000-0001-9675-5341</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-04, Vol.43 (4), p.1323-1336
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2895261871
source IEEE Electronic Library (IEL)
subjects Ablation
Adaptation
Adaptation models
Algorithms
Annotations
Biomedical imaging
Data collection
Data models
Distillation
Humans
Image degradation
Image Enhancement
Image Processing, Computer-Assisted
Inference
knowledge distillation
Medical diagnostic imaging
Medical image enhancement
Medical imaging
pseudo-label selection
source-free unsupervised domain adaptation
Training
title Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20and%20Adapting%20in%20the%20Clinic:%20Source-Free%20Unsupervised%20Domain%20Adaptation%20for%20Medical%20Image%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Heng&rft.date=2024-04-01&rft.volume=43&rft.issue=4&rft.spage=1323&rft.epage=1336&rft.pages=1323-1336&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2023.3335651&rft_dat=%3Cproquest_RIE%3E3031395788%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031395788&rft_id=info:pmid/38015687&rft_ieee_id=10330609&rfr_iscdi=true