Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry

The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-12, Vol.57 (49), p.20571-20582
Hauptverfasser: Fritzeen, Wade E., O’Rourke, Patrick R., Fuhrman, Jay G., Colosi, Lisa M., Yu, Sha, Shobe, William M., Doney, Scott C., McJeon, Haewon C., Clarens, Andrés F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20582
container_issue 49
container_start_page 20571
container_title Environmental science & technology
container_volume 57
creator Fritzeen, Wade E.
O’Rourke, Patrick R.
Fuhrman, Jay G.
Colosi, Lisa M.
Yu, Sha
Shobe, William M.
Doney, Scott C.
McJeon, Haewon C.
Clarens, Andrés F.
description The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.
doi_str_mv 10.1021/acs.est.3c05202
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895260448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903932445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-594b76c965754f0ffc6205b54ddc7ee3a74f53f8cbf2b7e14e9401c17669cf793</originalsourceid><addsrcrecordid>eNpdkc1Lw0AUxBdRsFbPXhe8CJK6n0n2WELVQqU9KHgLm81umpJsNG978L93awuCp4HHbx7DDEK3lMwoYfRRG5hZCDNuiGSEnaEJjZrIXNJzNCGE8kTx9OMSXQHsCCGMk3yCwtIH24w62BrPASxAb33Ag8Nha_HK6rr1Dd7osAUcBvzahraJMC7WDC_6FqAdPGA3Dv2vYT022rcGF1vbt0Z3WPsabzoNoTWAl77eQxi_r9GF0x3Ym5NO0fvT4q14SVbr52UxXyWaSRYSqUSVpUalMpPCEedMyoispKhrk1nLdSac5C43lWNVZqmwShBqaJamyrhM8Sm6P_79HIevfSynjImN7Trt7bCHkuVKspQIkUf07h-6G_ajj-lKpghXnAkhI_VwpGLZfwAl5WGB8nA8OE8L8B9_SHqX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903932445</pqid></control><display><type>article</type><title>Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry</title><source>ACS Publications</source><creator>Fritzeen, Wade E. ; O’Rourke, Patrick R. ; Fuhrman, Jay G. ; Colosi, Lisa M. ; Yu, Sha ; Shobe, William M. ; Doney, Scott C. ; McJeon, Haewon C. ; Clarens, Andrés F.</creator><creatorcontrib>Fritzeen, Wade E. ; O’Rourke, Patrick R. ; Fuhrman, Jay G. ; Colosi, Lisa M. ; Yu, Sha ; Shobe, William M. ; Doney, Scott C. ; McJeon, Haewon C. ; Clarens, Andrés F.</creatorcontrib><description>The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c05202</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Carbon sequestration ; Catalytic cracking ; Chemical industry ; Combustion ; Decarbonization ; Emissions ; Heat ; Heat generation ; Incineration ; Landfills ; Net zero ; Organic chemicals ; Organic chemistry ; Plastic debris ; Plastics industry ; Process heat ; Raw materials ; Sensitivity analysis ; Sustainable Systems ; Waste treatment</subject><ispartof>Environmental science &amp; technology, 2023-12, Vol.57 (49), p.20571-20582</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 12, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0606-9717 ; 0009-0005-8298-5062 ; 0000-0002-0357-112X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c05202$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c05202$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Fritzeen, Wade E.</creatorcontrib><creatorcontrib>O’Rourke, Patrick R.</creatorcontrib><creatorcontrib>Fuhrman, Jay G.</creatorcontrib><creatorcontrib>Colosi, Lisa M.</creatorcontrib><creatorcontrib>Yu, Sha</creatorcontrib><creatorcontrib>Shobe, William M.</creatorcontrib><creatorcontrib>Doney, Scott C.</creatorcontrib><creatorcontrib>McJeon, Haewon C.</creatorcontrib><creatorcontrib>Clarens, Andrés F.</creatorcontrib><title>Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sequestration</subject><subject>Catalytic cracking</subject><subject>Chemical industry</subject><subject>Combustion</subject><subject>Decarbonization</subject><subject>Emissions</subject><subject>Heat</subject><subject>Heat generation</subject><subject>Incineration</subject><subject>Landfills</subject><subject>Net zero</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Plastic debris</subject><subject>Plastics industry</subject><subject>Process heat</subject><subject>Raw materials</subject><subject>Sensitivity analysis</subject><subject>Sustainable Systems</subject><subject>Waste treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1Lw0AUxBdRsFbPXhe8CJK6n0n2WELVQqU9KHgLm81umpJsNG978L93awuCp4HHbx7DDEK3lMwoYfRRG5hZCDNuiGSEnaEJjZrIXNJzNCGE8kTx9OMSXQHsCCGMk3yCwtIH24w62BrPASxAb33Ag8Nha_HK6rr1Dd7osAUcBvzahraJMC7WDC_6FqAdPGA3Dv2vYT022rcGF1vbt0Z3WPsabzoNoTWAl77eQxi_r9GF0x3Ym5NO0fvT4q14SVbr52UxXyWaSRYSqUSVpUalMpPCEedMyoispKhrk1nLdSac5C43lWNVZqmwShBqaJamyrhM8Sm6P_79HIevfSynjImN7Trt7bCHkuVKspQIkUf07h-6G_ajj-lKpghXnAkhI_VwpGLZfwAl5WGB8nA8OE8L8B9_SHqX</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Fritzeen, Wade E.</creator><creator>O’Rourke, Patrick R.</creator><creator>Fuhrman, Jay G.</creator><creator>Colosi, Lisa M.</creator><creator>Yu, Sha</creator><creator>Shobe, William M.</creator><creator>Doney, Scott C.</creator><creator>McJeon, Haewon C.</creator><creator>Clarens, Andrés F.</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0606-9717</orcidid><orcidid>https://orcid.org/0009-0005-8298-5062</orcidid><orcidid>https://orcid.org/0000-0002-0357-112X</orcidid></search><sort><creationdate>20231212</creationdate><title>Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry</title><author>Fritzeen, Wade E. ; O’Rourke, Patrick R. ; Fuhrman, Jay G. ; Colosi, Lisa M. ; Yu, Sha ; Shobe, William M. ; Doney, Scott C. ; McJeon, Haewon C. ; Clarens, Andrés F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-594b76c965754f0ffc6205b54ddc7ee3a74f53f8cbf2b7e14e9401c17669cf793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sequestration</topic><topic>Catalytic cracking</topic><topic>Chemical industry</topic><topic>Combustion</topic><topic>Decarbonization</topic><topic>Emissions</topic><topic>Heat</topic><topic>Heat generation</topic><topic>Incineration</topic><topic>Landfills</topic><topic>Net zero</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Plastic debris</topic><topic>Plastics industry</topic><topic>Process heat</topic><topic>Raw materials</topic><topic>Sensitivity analysis</topic><topic>Sustainable Systems</topic><topic>Waste treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fritzeen, Wade E.</creatorcontrib><creatorcontrib>O’Rourke, Patrick R.</creatorcontrib><creatorcontrib>Fuhrman, Jay G.</creatorcontrib><creatorcontrib>Colosi, Lisa M.</creatorcontrib><creatorcontrib>Yu, Sha</creatorcontrib><creatorcontrib>Shobe, William M.</creatorcontrib><creatorcontrib>Doney, Scott C.</creatorcontrib><creatorcontrib>McJeon, Haewon C.</creatorcontrib><creatorcontrib>Clarens, Andrés F.</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritzeen, Wade E.</au><au>O’Rourke, Patrick R.</au><au>Fuhrman, Jay G.</au><au>Colosi, Lisa M.</au><au>Yu, Sha</au><au>Shobe, William M.</au><au>Doney, Scott C.</au><au>McJeon, Haewon C.</au><au>Clarens, Andrés F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-12-12</date><risdate>2023</risdate><volume>57</volume><issue>49</issue><spage>20571</spage><epage>20582</epage><pages>20571-20582</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.3c05202</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0606-9717</orcidid><orcidid>https://orcid.org/0009-0005-8298-5062</orcidid><orcidid>https://orcid.org/0000-0002-0357-112X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-12, Vol.57 (49), p.20571-20582
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2895260448
source ACS Publications
subjects Carbon
Carbon dioxide
Carbon dioxide emissions
Carbon sequestration
Catalytic cracking
Chemical industry
Combustion
Decarbonization
Emissions
Heat
Heat generation
Incineration
Landfills
Net zero
Organic chemicals
Organic chemistry
Plastic debris
Plastics industry
Process heat
Raw materials
Sensitivity analysis
Sustainable Systems
Waste treatment
title Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Assessment%20of%20the%20Leading%20Paths%20to%20Mitigate%20CO2%20Emissions%20from%20the%20Organic%20Chemical%20and%20Plastics%20Industry&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Fritzeen,%20Wade%20E.&rft.date=2023-12-12&rft.volume=57&rft.issue=49&rft.spage=20571&rft.epage=20582&rft.pages=20571-20582&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c05202&rft_dat=%3Cproquest_acs_j%3E2903932445%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903932445&rft_id=info:pmid/&rfr_iscdi=true