Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry
The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strate...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2023-12, Vol.57 (49), p.20571-20582 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20582 |
---|---|
container_issue | 49 |
container_start_page | 20571 |
container_title | Environmental science & technology |
container_volume | 57 |
creator | Fritzeen, Wade E. O’Rourke, Patrick R. Fuhrman, Jay G. Colosi, Lisa M. Yu, Sha Shobe, William M. Doney, Scott C. McJeon, Haewon C. Clarens, Andrés F. |
description | The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs. |
doi_str_mv | 10.1021/acs.est.3c05202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895260448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903932445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-594b76c965754f0ffc6205b54ddc7ee3a74f53f8cbf2b7e14e9401c17669cf793</originalsourceid><addsrcrecordid>eNpdkc1Lw0AUxBdRsFbPXhe8CJK6n0n2WELVQqU9KHgLm81umpJsNG978L93awuCp4HHbx7DDEK3lMwoYfRRG5hZCDNuiGSEnaEJjZrIXNJzNCGE8kTx9OMSXQHsCCGMk3yCwtIH24w62BrPASxAb33Ag8Nha_HK6rr1Dd7osAUcBvzahraJMC7WDC_6FqAdPGA3Dv2vYT022rcGF1vbt0Z3WPsabzoNoTWAl77eQxi_r9GF0x3Ym5NO0fvT4q14SVbr52UxXyWaSRYSqUSVpUalMpPCEedMyoispKhrk1nLdSac5C43lWNVZqmwShBqaJamyrhM8Sm6P_79HIevfSynjImN7Trt7bCHkuVKspQIkUf07h-6G_ajj-lKpghXnAkhI_VwpGLZfwAl5WGB8nA8OE8L8B9_SHqX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903932445</pqid></control><display><type>article</type><title>Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry</title><source>ACS Publications</source><creator>Fritzeen, Wade E. ; O’Rourke, Patrick R. ; Fuhrman, Jay G. ; Colosi, Lisa M. ; Yu, Sha ; Shobe, William M. ; Doney, Scott C. ; McJeon, Haewon C. ; Clarens, Andrés F.</creator><creatorcontrib>Fritzeen, Wade E. ; O’Rourke, Patrick R. ; Fuhrman, Jay G. ; Colosi, Lisa M. ; Yu, Sha ; Shobe, William M. ; Doney, Scott C. ; McJeon, Haewon C. ; Clarens, Andrés F.</creatorcontrib><description>The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c05202</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Carbon sequestration ; Catalytic cracking ; Chemical industry ; Combustion ; Decarbonization ; Emissions ; Heat ; Heat generation ; Incineration ; Landfills ; Net zero ; Organic chemicals ; Organic chemistry ; Plastic debris ; Plastics industry ; Process heat ; Raw materials ; Sensitivity analysis ; Sustainable Systems ; Waste treatment</subject><ispartof>Environmental science & technology, 2023-12, Vol.57 (49), p.20571-20582</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 12, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0606-9717 ; 0009-0005-8298-5062 ; 0000-0002-0357-112X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c05202$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c05202$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Fritzeen, Wade E.</creatorcontrib><creatorcontrib>O’Rourke, Patrick R.</creatorcontrib><creatorcontrib>Fuhrman, Jay G.</creatorcontrib><creatorcontrib>Colosi, Lisa M.</creatorcontrib><creatorcontrib>Yu, Sha</creatorcontrib><creatorcontrib>Shobe, William M.</creatorcontrib><creatorcontrib>Doney, Scott C.</creatorcontrib><creatorcontrib>McJeon, Haewon C.</creatorcontrib><creatorcontrib>Clarens, Andrés F.</creatorcontrib><title>Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sequestration</subject><subject>Catalytic cracking</subject><subject>Chemical industry</subject><subject>Combustion</subject><subject>Decarbonization</subject><subject>Emissions</subject><subject>Heat</subject><subject>Heat generation</subject><subject>Incineration</subject><subject>Landfills</subject><subject>Net zero</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Plastic debris</subject><subject>Plastics industry</subject><subject>Process heat</subject><subject>Raw materials</subject><subject>Sensitivity analysis</subject><subject>Sustainable Systems</subject><subject>Waste treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1Lw0AUxBdRsFbPXhe8CJK6n0n2WELVQqU9KHgLm81umpJsNG978L93awuCp4HHbx7DDEK3lMwoYfRRG5hZCDNuiGSEnaEJjZrIXNJzNCGE8kTx9OMSXQHsCCGMk3yCwtIH24w62BrPASxAb33Ag8Nha_HK6rr1Dd7osAUcBvzahraJMC7WDC_6FqAdPGA3Dv2vYT022rcGF1vbt0Z3WPsabzoNoTWAl77eQxi_r9GF0x3Ym5NO0fvT4q14SVbr52UxXyWaSRYSqUSVpUalMpPCEedMyoispKhrk1nLdSac5C43lWNVZqmwShBqaJamyrhM8Sm6P_79HIevfSynjImN7Trt7bCHkuVKspQIkUf07h-6G_ajj-lKpghXnAkhI_VwpGLZfwAl5WGB8nA8OE8L8B9_SHqX</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Fritzeen, Wade E.</creator><creator>O’Rourke, Patrick R.</creator><creator>Fuhrman, Jay G.</creator><creator>Colosi, Lisa M.</creator><creator>Yu, Sha</creator><creator>Shobe, William M.</creator><creator>Doney, Scott C.</creator><creator>McJeon, Haewon C.</creator><creator>Clarens, Andrés F.</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0606-9717</orcidid><orcidid>https://orcid.org/0009-0005-8298-5062</orcidid><orcidid>https://orcid.org/0000-0002-0357-112X</orcidid></search><sort><creationdate>20231212</creationdate><title>Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry</title><author>Fritzeen, Wade E. ; O’Rourke, Patrick R. ; Fuhrman, Jay G. ; Colosi, Lisa M. ; Yu, Sha ; Shobe, William M. ; Doney, Scott C. ; McJeon, Haewon C. ; Clarens, Andrés F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-594b76c965754f0ffc6205b54ddc7ee3a74f53f8cbf2b7e14e9401c17669cf793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sequestration</topic><topic>Catalytic cracking</topic><topic>Chemical industry</topic><topic>Combustion</topic><topic>Decarbonization</topic><topic>Emissions</topic><topic>Heat</topic><topic>Heat generation</topic><topic>Incineration</topic><topic>Landfills</topic><topic>Net zero</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Plastic debris</topic><topic>Plastics industry</topic><topic>Process heat</topic><topic>Raw materials</topic><topic>Sensitivity analysis</topic><topic>Sustainable Systems</topic><topic>Waste treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fritzeen, Wade E.</creatorcontrib><creatorcontrib>O’Rourke, Patrick R.</creatorcontrib><creatorcontrib>Fuhrman, Jay G.</creatorcontrib><creatorcontrib>Colosi, Lisa M.</creatorcontrib><creatorcontrib>Yu, Sha</creatorcontrib><creatorcontrib>Shobe, William M.</creatorcontrib><creatorcontrib>Doney, Scott C.</creatorcontrib><creatorcontrib>McJeon, Haewon C.</creatorcontrib><creatorcontrib>Clarens, Andrés F.</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritzeen, Wade E.</au><au>O’Rourke, Patrick R.</au><au>Fuhrman, Jay G.</au><au>Colosi, Lisa M.</au><au>Yu, Sha</au><au>Shobe, William M.</au><au>Doney, Scott C.</au><au>McJeon, Haewon C.</au><au>Clarens, Andrés F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-12-12</date><risdate>2023</risdate><volume>57</volume><issue>49</issue><spage>20571</spage><epage>20582</epage><pages>20571-20582</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.3c05202</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0606-9717</orcidid><orcidid>https://orcid.org/0009-0005-8298-5062</orcidid><orcidid>https://orcid.org/0000-0002-0357-112X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2023-12, Vol.57 (49), p.20571-20582 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2895260448 |
source | ACS Publications |
subjects | Carbon Carbon dioxide Carbon dioxide emissions Carbon sequestration Catalytic cracking Chemical industry Combustion Decarbonization Emissions Heat Heat generation Incineration Landfills Net zero Organic chemicals Organic chemistry Plastic debris Plastics industry Process heat Raw materials Sensitivity analysis Sustainable Systems Waste treatment |
title | Integrated Assessment of the Leading Paths to Mitigate CO2 Emissions from the Organic Chemical and Plastics Industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Assessment%20of%20the%20Leading%20Paths%20to%20Mitigate%20CO2%20Emissions%20from%20the%20Organic%20Chemical%20and%20Plastics%20Industry&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Fritzeen,%20Wade%20E.&rft.date=2023-12-12&rft.volume=57&rft.issue=49&rft.spage=20571&rft.epage=20582&rft.pages=20571-20582&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c05202&rft_dat=%3Cproquest_acs_j%3E2903932445%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903932445&rft_id=info:pmid/&rfr_iscdi=true |