Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science

Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical pharmacology and therapeutics 2024-04, Vol.115 (4), p.687-697
Hauptverfasser: Gray, Magnus, Samala, Ravi, Liu, Qi, Skiles, Denny, Xu, Joshua, Tong, Weida, Wu, Leihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 4
container_start_page 687
container_title Clinical pharmacology and therapeutics
container_volume 115
creator Gray, Magnus
Samala, Ravi
Liu, Qi
Skiles, Denny
Xu, Joshua
Tong, Weida
Wu, Leihong
description Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to perpetuate and even amplify biases is a growing concern. Bias, as used in this paper, refers to the tendency toward a particular characteristic or behavior, and thus, a biased AI system is one that shows biased associations entities. In this literature review, we examine the current state of research on AI bias, including its sources, as well as the methods for measuring, benchmarking, and mitigating it. We also examine the biases and methods of mitigation specifically relevant to the healthcare field and offer a perspective on bias measurement and mitigation in regulatory science decision making.
doi_str_mv 10.1002/cpt.3117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895260337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895260337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3557-892d225224d47bb23cd42bb95cfb69e2be1e959cc4bdd0d66245baf28025b743</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhujEUQTf4HppTfDrl231TskfpCAGuV-abszUjM2bDsI_94iqFdenfckz3ly8iJ0GZNhTAi90Ss_ZHGcHaF-zBmNUs74MeoTQkQkKEt76My5j7AmIs9PUY_lJM5ZSvrIzUC6zsISGo9lU-KZ8WYhvWkb3Fb4zkiHTYNH1pvKaCNrPGk81LVZQKPhFo_ws7Q28GvAU-MhxGDDb7A2sMFVa0NcdLX0rd3id212V-fopJK1g4vDHKD5w_18_BRNXx4n49E00ozzLMoFLSnllCZlkilFmS4TqpTgulKpAKogBsGF1okqS1KmKU24khXNCeUqS9gAXe-1K9t-duB8sTROh99lA23nCpoLTlPCWPaHats6Z6EqVtYspd0WMSl2DReh4WLXcECvDtZOLaH8BX8qDUC0Bzamhu2_omL8Ov8WfgE864Wo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895260337</pqid></control><display><type>article</type><title>Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Gray, Magnus ; Samala, Ravi ; Liu, Qi ; Skiles, Denny ; Xu, Joshua ; Tong, Weida ; Wu, Leihong</creator><creatorcontrib>Gray, Magnus ; Samala, Ravi ; Liu, Qi ; Skiles, Denny ; Xu, Joshua ; Tong, Weida ; Wu, Leihong</creatorcontrib><description>Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to perpetuate and even amplify biases is a growing concern. Bias, as used in this paper, refers to the tendency toward a particular characteristic or behavior, and thus, a biased AI system is one that shows biased associations entities. In this literature review, we examine the current state of research on AI bias, including its sources, as well as the methods for measuring, benchmarking, and mitigating it. We also examine the biases and methods of mitigation specifically relevant to the healthcare field and offer a perspective on bias measurement and mitigation in regulatory science decision making.</description><identifier>ISSN: 0009-9236</identifier><identifier>EISSN: 1532-6535</identifier><identifier>DOI: 10.1002/cpt.3117</identifier><identifier>PMID: 38018360</identifier><language>eng</language><publisher>United States</publisher><subject>Artificial Intelligence ; Benchmarking ; Bias ; Humans ; Public Health</subject><ispartof>Clinical pharmacology and therapeutics, 2024-04, Vol.115 (4), p.687-697</ispartof><rights>Published 2023. This article is a U.S. Government work and is in the public domain in the USA. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><rights>Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Clinical Pharmacology &amp; Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3557-892d225224d47bb23cd42bb95cfb69e2be1e959cc4bdd0d66245baf28025b743</citedby><cites>FETCH-LOGICAL-c3557-892d225224d47bb23cd42bb95cfb69e2be1e959cc4bdd0d66245baf28025b743</cites><orcidid>0009-0009-6355-7627 ; 0000-0002-4053-4213 ; 0000-0002-6661-4801 ; 0000-0002-4093-3708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpt.3117$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpt.3117$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38018360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gray, Magnus</creatorcontrib><creatorcontrib>Samala, Ravi</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Skiles, Denny</creatorcontrib><creatorcontrib>Xu, Joshua</creatorcontrib><creatorcontrib>Tong, Weida</creatorcontrib><creatorcontrib>Wu, Leihong</creatorcontrib><title>Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science</title><title>Clinical pharmacology and therapeutics</title><addtitle>Clin Pharmacol Ther</addtitle><description>Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to perpetuate and even amplify biases is a growing concern. Bias, as used in this paper, refers to the tendency toward a particular characteristic or behavior, and thus, a biased AI system is one that shows biased associations entities. In this literature review, we examine the current state of research on AI bias, including its sources, as well as the methods for measuring, benchmarking, and mitigating it. We also examine the biases and methods of mitigation specifically relevant to the healthcare field and offer a perspective on bias measurement and mitigation in regulatory science decision making.</description><subject>Artificial Intelligence</subject><subject>Benchmarking</subject><subject>Bias</subject><subject>Humans</subject><subject>Public Health</subject><issn>0009-9236</issn><issn>1532-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kF1PwjAUhhujEUQTf4HppTfDrl231TskfpCAGuV-abszUjM2bDsI_94iqFdenfckz3ly8iJ0GZNhTAi90Ss_ZHGcHaF-zBmNUs74MeoTQkQkKEt76My5j7AmIs9PUY_lJM5ZSvrIzUC6zsISGo9lU-KZ8WYhvWkb3Fb4zkiHTYNH1pvKaCNrPGk81LVZQKPhFo_ws7Q28GvAU-MhxGDDb7A2sMFVa0NcdLX0rd3id212V-fopJK1g4vDHKD5w_18_BRNXx4n49E00ozzLMoFLSnllCZlkilFmS4TqpTgulKpAKogBsGF1okqS1KmKU24khXNCeUqS9gAXe-1K9t-duB8sTROh99lA23nCpoLTlPCWPaHats6Z6EqVtYspd0WMSl2DReh4WLXcECvDtZOLaH8BX8qDUC0Bzamhu2_omL8Ov8WfgE864Wo</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Gray, Magnus</creator><creator>Samala, Ravi</creator><creator>Liu, Qi</creator><creator>Skiles, Denny</creator><creator>Xu, Joshua</creator><creator>Tong, Weida</creator><creator>Wu, Leihong</creator><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-6355-7627</orcidid><orcidid>https://orcid.org/0000-0002-4053-4213</orcidid><orcidid>https://orcid.org/0000-0002-6661-4801</orcidid><orcidid>https://orcid.org/0000-0002-4093-3708</orcidid></search><sort><creationdate>202404</creationdate><title>Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science</title><author>Gray, Magnus ; Samala, Ravi ; Liu, Qi ; Skiles, Denny ; Xu, Joshua ; Tong, Weida ; Wu, Leihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3557-892d225224d47bb23cd42bb95cfb69e2be1e959cc4bdd0d66245baf28025b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Benchmarking</topic><topic>Bias</topic><topic>Humans</topic><topic>Public Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, Magnus</creatorcontrib><creatorcontrib>Samala, Ravi</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Skiles, Denny</creatorcontrib><creatorcontrib>Xu, Joshua</creatorcontrib><creatorcontrib>Tong, Weida</creatorcontrib><creatorcontrib>Wu, Leihong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, Magnus</au><au>Samala, Ravi</au><au>Liu, Qi</au><au>Skiles, Denny</au><au>Xu, Joshua</au><au>Tong, Weida</au><au>Wu, Leihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science</atitle><jtitle>Clinical pharmacology and therapeutics</jtitle><addtitle>Clin Pharmacol Ther</addtitle><date>2024-04</date><risdate>2024</risdate><volume>115</volume><issue>4</issue><spage>687</spage><epage>697</epage><pages>687-697</pages><issn>0009-9236</issn><eissn>1532-6535</eissn><abstract>Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to perpetuate and even amplify biases is a growing concern. Bias, as used in this paper, refers to the tendency toward a particular characteristic or behavior, and thus, a biased AI system is one that shows biased associations entities. In this literature review, we examine the current state of research on AI bias, including its sources, as well as the methods for measuring, benchmarking, and mitigating it. We also examine the biases and methods of mitigation specifically relevant to the healthcare field and offer a perspective on bias measurement and mitigation in regulatory science decision making.</abstract><cop>United States</cop><pmid>38018360</pmid><doi>10.1002/cpt.3117</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0009-6355-7627</orcidid><orcidid>https://orcid.org/0000-0002-4053-4213</orcidid><orcidid>https://orcid.org/0000-0002-6661-4801</orcidid><orcidid>https://orcid.org/0000-0002-4093-3708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9236
ispartof Clinical pharmacology and therapeutics, 2024-04, Vol.115 (4), p.687-697
issn 0009-9236
1532-6535
language eng
recordid cdi_proquest_miscellaneous_2895260337
source MEDLINE; Access via Wiley Online Library
subjects Artificial Intelligence
Benchmarking
Bias
Humans
Public Health
title Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20Mitigation%20of%20Bias%20in%20Artificial%20Intelligence:%20A%20Narrative%20Literature%20Review%20for%20Regulatory%20Science&rft.jtitle=Clinical%20pharmacology%20and%20therapeutics&rft.au=Gray,%20Magnus&rft.date=2024-04&rft.volume=115&rft.issue=4&rft.spage=687&rft.epage=697&rft.pages=687-697&rft.issn=0009-9236&rft.eissn=1532-6535&rft_id=info:doi/10.1002/cpt.3117&rft_dat=%3Cproquest_cross%3E2895260337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895260337&rft_id=info:pmid/38018360&rfr_iscdi=true