Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science
Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to per...
Gespeichert in:
Veröffentlicht in: | Clinical pharmacology and therapeutics 2024-04, Vol.115 (4), p.687-697 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 697 |
---|---|
container_issue | 4 |
container_start_page | 687 |
container_title | Clinical pharmacology and therapeutics |
container_volume | 115 |
creator | Gray, Magnus Samala, Ravi Liu, Qi Skiles, Denny Xu, Joshua Tong, Weida Wu, Leihong |
description | Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to perpetuate and even amplify biases is a growing concern. Bias, as used in this paper, refers to the tendency toward a particular characteristic or behavior, and thus, a biased AI system is one that shows biased associations entities. In this literature review, we examine the current state of research on AI bias, including its sources, as well as the methods for measuring, benchmarking, and mitigating it. We also examine the biases and methods of mitigation specifically relevant to the healthcare field and offer a perspective on bias measurement and mitigation in regulatory science decision making. |
doi_str_mv | 10.1002/cpt.3117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2895260337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895260337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3557-892d225224d47bb23cd42bb95cfb69e2be1e959cc4bdd0d66245baf28025b743</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhujEUQTf4HppTfDrl231TskfpCAGuV-abszUjM2bDsI_94iqFdenfckz3ly8iJ0GZNhTAi90Ss_ZHGcHaF-zBmNUs74MeoTQkQkKEt76My5j7AmIs9PUY_lJM5ZSvrIzUC6zsISGo9lU-KZ8WYhvWkb3Fb4zkiHTYNH1pvKaCNrPGk81LVZQKPhFo_ws7Q28GvAU-MhxGDDb7A2sMFVa0NcdLX0rd3id212V-fopJK1g4vDHKD5w_18_BRNXx4n49E00ozzLMoFLSnllCZlkilFmS4TqpTgulKpAKogBsGF1okqS1KmKU24khXNCeUqS9gAXe-1K9t-duB8sTROh99lA23nCpoLTlPCWPaHats6Z6EqVtYspd0WMSl2DReh4WLXcECvDtZOLaH8BX8qDUC0Bzamhu2_omL8Ov8WfgE864Wo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895260337</pqid></control><display><type>article</type><title>Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Gray, Magnus ; Samala, Ravi ; Liu, Qi ; Skiles, Denny ; Xu, Joshua ; Tong, Weida ; Wu, Leihong</creator><creatorcontrib>Gray, Magnus ; Samala, Ravi ; Liu, Qi ; Skiles, Denny ; Xu, Joshua ; Tong, Weida ; Wu, Leihong</creatorcontrib><description>Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to perpetuate and even amplify biases is a growing concern. Bias, as used in this paper, refers to the tendency toward a particular characteristic or behavior, and thus, a biased AI system is one that shows biased associations entities. In this literature review, we examine the current state of research on AI bias, including its sources, as well as the methods for measuring, benchmarking, and mitigating it. We also examine the biases and methods of mitigation specifically relevant to the healthcare field and offer a perspective on bias measurement and mitigation in regulatory science decision making.</description><identifier>ISSN: 0009-9236</identifier><identifier>EISSN: 1532-6535</identifier><identifier>DOI: 10.1002/cpt.3117</identifier><identifier>PMID: 38018360</identifier><language>eng</language><publisher>United States</publisher><subject>Artificial Intelligence ; Benchmarking ; Bias ; Humans ; Public Health</subject><ispartof>Clinical pharmacology and therapeutics, 2024-04, Vol.115 (4), p.687-697</ispartof><rights>Published 2023. This article is a U.S. Government work and is in the public domain in the USA. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><rights>Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3557-892d225224d47bb23cd42bb95cfb69e2be1e959cc4bdd0d66245baf28025b743</citedby><cites>FETCH-LOGICAL-c3557-892d225224d47bb23cd42bb95cfb69e2be1e959cc4bdd0d66245baf28025b743</cites><orcidid>0009-0009-6355-7627 ; 0000-0002-4053-4213 ; 0000-0002-6661-4801 ; 0000-0002-4093-3708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpt.3117$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpt.3117$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38018360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gray, Magnus</creatorcontrib><creatorcontrib>Samala, Ravi</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Skiles, Denny</creatorcontrib><creatorcontrib>Xu, Joshua</creatorcontrib><creatorcontrib>Tong, Weida</creatorcontrib><creatorcontrib>Wu, Leihong</creatorcontrib><title>Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science</title><title>Clinical pharmacology and therapeutics</title><addtitle>Clin Pharmacol Ther</addtitle><description>Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to perpetuate and even amplify biases is a growing concern. Bias, as used in this paper, refers to the tendency toward a particular characteristic or behavior, and thus, a biased AI system is one that shows biased associations entities. In this literature review, we examine the current state of research on AI bias, including its sources, as well as the methods for measuring, benchmarking, and mitigating it. We also examine the biases and methods of mitigation specifically relevant to the healthcare field and offer a perspective on bias measurement and mitigation in regulatory science decision making.</description><subject>Artificial Intelligence</subject><subject>Benchmarking</subject><subject>Bias</subject><subject>Humans</subject><subject>Public Health</subject><issn>0009-9236</issn><issn>1532-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kF1PwjAUhhujEUQTf4HppTfDrl231TskfpCAGuV-abszUjM2bDsI_94iqFdenfckz3ly8iJ0GZNhTAi90Ss_ZHGcHaF-zBmNUs74MeoTQkQkKEt76My5j7AmIs9PUY_lJM5ZSvrIzUC6zsISGo9lU-KZ8WYhvWkb3Fb4zkiHTYNH1pvKaCNrPGk81LVZQKPhFo_ws7Q28GvAU-MhxGDDb7A2sMFVa0NcdLX0rd3id212V-fopJK1g4vDHKD5w_18_BRNXx4n49E00ozzLMoFLSnllCZlkilFmS4TqpTgulKpAKogBsGF1okqS1KmKU24khXNCeUqS9gAXe-1K9t-duB8sTROh99lA23nCpoLTlPCWPaHats6Z6EqVtYspd0WMSl2DReh4WLXcECvDtZOLaH8BX8qDUC0Bzamhu2_omL8Ov8WfgE864Wo</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Gray, Magnus</creator><creator>Samala, Ravi</creator><creator>Liu, Qi</creator><creator>Skiles, Denny</creator><creator>Xu, Joshua</creator><creator>Tong, Weida</creator><creator>Wu, Leihong</creator><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-6355-7627</orcidid><orcidid>https://orcid.org/0000-0002-4053-4213</orcidid><orcidid>https://orcid.org/0000-0002-6661-4801</orcidid><orcidid>https://orcid.org/0000-0002-4093-3708</orcidid></search><sort><creationdate>202404</creationdate><title>Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science</title><author>Gray, Magnus ; Samala, Ravi ; Liu, Qi ; Skiles, Denny ; Xu, Joshua ; Tong, Weida ; Wu, Leihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3557-892d225224d47bb23cd42bb95cfb69e2be1e959cc4bdd0d66245baf28025b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Benchmarking</topic><topic>Bias</topic><topic>Humans</topic><topic>Public Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, Magnus</creatorcontrib><creatorcontrib>Samala, Ravi</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Skiles, Denny</creatorcontrib><creatorcontrib>Xu, Joshua</creatorcontrib><creatorcontrib>Tong, Weida</creatorcontrib><creatorcontrib>Wu, Leihong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, Magnus</au><au>Samala, Ravi</au><au>Liu, Qi</au><au>Skiles, Denny</au><au>Xu, Joshua</au><au>Tong, Weida</au><au>Wu, Leihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science</atitle><jtitle>Clinical pharmacology and therapeutics</jtitle><addtitle>Clin Pharmacol Ther</addtitle><date>2024-04</date><risdate>2024</risdate><volume>115</volume><issue>4</issue><spage>687</spage><epage>697</epage><pages>687-697</pages><issn>0009-9236</issn><eissn>1532-6535</eissn><abstract>Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision‐making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to perpetuate and even amplify biases is a growing concern. Bias, as used in this paper, refers to the tendency toward a particular characteristic or behavior, and thus, a biased AI system is one that shows biased associations entities. In this literature review, we examine the current state of research on AI bias, including its sources, as well as the methods for measuring, benchmarking, and mitigating it. We also examine the biases and methods of mitigation specifically relevant to the healthcare field and offer a perspective on bias measurement and mitigation in regulatory science decision making.</abstract><cop>United States</cop><pmid>38018360</pmid><doi>10.1002/cpt.3117</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0009-6355-7627</orcidid><orcidid>https://orcid.org/0000-0002-4053-4213</orcidid><orcidid>https://orcid.org/0000-0002-6661-4801</orcidid><orcidid>https://orcid.org/0000-0002-4093-3708</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9236 |
ispartof | Clinical pharmacology and therapeutics, 2024-04, Vol.115 (4), p.687-697 |
issn | 0009-9236 1532-6535 |
language | eng |
recordid | cdi_proquest_miscellaneous_2895260337 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Artificial Intelligence Benchmarking Bias Humans Public Health |
title | Measurement and Mitigation of Bias in Artificial Intelligence: A Narrative Literature Review for Regulatory Science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20Mitigation%20of%20Bias%20in%20Artificial%20Intelligence:%20A%20Narrative%20Literature%20Review%20for%20Regulatory%20Science&rft.jtitle=Clinical%20pharmacology%20and%20therapeutics&rft.au=Gray,%20Magnus&rft.date=2024-04&rft.volume=115&rft.issue=4&rft.spage=687&rft.epage=697&rft.pages=687-697&rft.issn=0009-9236&rft.eissn=1532-6535&rft_id=info:doi/10.1002/cpt.3117&rft_dat=%3Cproquest_cross%3E2895260337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895260337&rft_id=info:pmid/38018360&rfr_iscdi=true |