Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD
Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction i...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2006-12, Vol.297 (1), p.44-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | Journal of crystal growth |
container_volume | 297 |
creator | Kadoiwa, Kaoru Ono, Kenichi Ohkura, Yuji |
description | Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios (
x) of (1−
x)InP–
xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio (
x) for the (1−
x)InP–
xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties.
Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios (
x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration. |
doi_str_mv | 10.1016/j.jcrysgro.2006.09.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28948074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024806008669</els_id><sourcerecordid>28948074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323</originalsourceid><addsrcrecordid>eNqFkDtPAzEQhC0EEuHxF5Ab6O5Y25c7uwOFVxAICqCgsXz2HnEUfGBfQPx7HAVESTPbzLejGUIOGJQMWH08L-c2fqWX2JccoC5BlcDlBhkx2YhiDMA3ySgrL4BXcpvspDQHyCSDEbl-DtT5rlsm3wfa4sx8-D5SM9BhhnQaLs1puj-ehns6wwFj70PWzlikOe8z0MyFF3p7N3k62yNbnVkk3P-5u-Tx4vxhclXc3F1OJ6c3ha2EGgqlWgnjxrXMyQpa5LWtTAuG8RY6MQbhcolGNk5IJlC1qgblqla6umFjJrjYJUfrv2-xf19iGvSrTxYXCxOwXybNpaokNFU21mujjX1KETv9Fv2riV-agV5Np-f6dzq9mk6D0nm6DB7-JJhkzaKLJlif_mgpqprXK9_J2oe57ofHqJP1GCw6H9EO2vX-v6hvAyOGnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28948074</pqid></control><display><type>article</type><title>Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kadoiwa, Kaoru ; Ono, Kenichi ; Ohkura, Yuji</creator><creatorcontrib>Kadoiwa, Kaoru ; Ono, Kenichi ; Ohkura, Yuji</creatorcontrib><description>Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios (
x) of (1−
x)InP–
xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio (
x) for the (1−
x)InP–
xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties.
Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios (
x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2006.09.028</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Diffusion ; A3. Metalorganic vapor phase epitaxy ; B2. Semiconducting III-V materials ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lasers ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Optics ; Physics ; Semiconductor lasers; laser diodes</subject><ispartof>Journal of crystal growth, 2006-12, Vol.297 (1), p.44-51</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323</citedby><cites>FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024806008669$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18346268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadoiwa, Kaoru</creatorcontrib><creatorcontrib>Ono, Kenichi</creatorcontrib><creatorcontrib>Ohkura, Yuji</creatorcontrib><title>Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD</title><title>Journal of crystal growth</title><description>Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios (
x) of (1−
x)InP–
xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio (
x) for the (1−
x)InP–
xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties.
Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios (
x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.</description><subject>A1. Diffusion</subject><subject>A3. Metalorganic vapor phase epitaxy</subject><subject>B2. Semiconducting III-V materials</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optics</subject><subject>Physics</subject><subject>Semiconductor lasers; laser diodes</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPAzEQhC0EEuHxF5Ab6O5Y25c7uwOFVxAICqCgsXz2HnEUfGBfQPx7HAVESTPbzLejGUIOGJQMWH08L-c2fqWX2JccoC5BlcDlBhkx2YhiDMA3ySgrL4BXcpvspDQHyCSDEbl-DtT5rlsm3wfa4sx8-D5SM9BhhnQaLs1puj-ehns6wwFj70PWzlikOe8z0MyFF3p7N3k62yNbnVkk3P-5u-Tx4vxhclXc3F1OJ6c3ha2EGgqlWgnjxrXMyQpa5LWtTAuG8RY6MQbhcolGNk5IJlC1qgblqla6umFjJrjYJUfrv2-xf19iGvSrTxYXCxOwXybNpaokNFU21mujjX1KETv9Fv2riV-agV5Np-f6dzq9mk6D0nm6DB7-JJhkzaKLJlif_mgpqprXK9_J2oe57ofHqJP1GCw6H9EO2vX-v6hvAyOGnA</recordid><startdate>20061215</startdate><enddate>20061215</enddate><creator>Kadoiwa, Kaoru</creator><creator>Ono, Kenichi</creator><creator>Ohkura, Yuji</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20061215</creationdate><title>Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD</title><author>Kadoiwa, Kaoru ; Ono, Kenichi ; Ohkura, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>A1. Diffusion</topic><topic>A3. Metalorganic vapor phase epitaxy</topic><topic>B2. Semiconducting III-V materials</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optics</topic><topic>Physics</topic><topic>Semiconductor lasers; laser diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadoiwa, Kaoru</creatorcontrib><creatorcontrib>Ono, Kenichi</creatorcontrib><creatorcontrib>Ohkura, Yuji</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadoiwa, Kaoru</au><au>Ono, Kenichi</au><au>Ohkura, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD</atitle><jtitle>Journal of crystal growth</jtitle><date>2006-12-15</date><risdate>2006</risdate><volume>297</volume><issue>1</issue><spage>44</spage><epage>51</epage><pages>44-51</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios (
x) of (1−
x)InP–
xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio (
x) for the (1−
x)InP–
xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties.
Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios (
x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2006.09.028</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2006-12, Vol.297 (1), p.44-51 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_28948074 |
source | Elsevier ScienceDirect Journals Complete |
subjects | A1. Diffusion A3. Metalorganic vapor phase epitaxy B2. Semiconducting III-V materials Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology Exact sciences and technology Fundamental areas of phenomenology (including applications) Lasers Materials science Methods of deposition of films and coatings film growth and epitaxy Optics Physics Semiconductor lasers laser diodes |
title | Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zn%20diffusion%20behavior%20at%20the%20InGaAsP/InP%20heterointerface%20grown%20using%20MOCVD&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Kadoiwa,%20Kaoru&rft.date=2006-12-15&rft.volume=297&rft.issue=1&rft.spage=44&rft.epage=51&rft.pages=44-51&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2006.09.028&rft_dat=%3Cproquest_cross%3E28948074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28948074&rft_id=info:pmid/&rft_els_id=S0022024806008669&rfr_iscdi=true |