Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD

Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2006-12, Vol.297 (1), p.44-51
Hauptverfasser: Kadoiwa, Kaoru, Ono, Kenichi, Ohkura, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 44
container_title Journal of crystal growth
container_volume 297
creator Kadoiwa, Kaoru
Ono, Kenichi
Ohkura, Yuji
description Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios ( x) of (1− x)InP– xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio ( x) for the (1− x)InP– xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties. Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios ( x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.
doi_str_mv 10.1016/j.jcrysgro.2006.09.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28948074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024806008669</els_id><sourcerecordid>28948074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323</originalsourceid><addsrcrecordid>eNqFkDtPAzEQhC0EEuHxF5Ab6O5Y25c7uwOFVxAICqCgsXz2HnEUfGBfQPx7HAVESTPbzLejGUIOGJQMWH08L-c2fqWX2JccoC5BlcDlBhkx2YhiDMA3ySgrL4BXcpvspDQHyCSDEbl-DtT5rlsm3wfa4sx8-D5SM9BhhnQaLs1puj-ehns6wwFj70PWzlikOe8z0MyFF3p7N3k62yNbnVkk3P-5u-Tx4vxhclXc3F1OJ6c3ha2EGgqlWgnjxrXMyQpa5LWtTAuG8RY6MQbhcolGNk5IJlC1qgblqla6umFjJrjYJUfrv2-xf19iGvSrTxYXCxOwXybNpaokNFU21mujjX1KETv9Fv2riV-agV5Np-f6dzq9mk6D0nm6DB7-JJhkzaKLJlif_mgpqprXK9_J2oe57ofHqJP1GCw6H9EO2vX-v6hvAyOGnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28948074</pqid></control><display><type>article</type><title>Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kadoiwa, Kaoru ; Ono, Kenichi ; Ohkura, Yuji</creator><creatorcontrib>Kadoiwa, Kaoru ; Ono, Kenichi ; Ohkura, Yuji</creatorcontrib><description>Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios ( x) of (1− x)InP– xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio ( x) for the (1− x)InP– xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties. Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios ( x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2006.09.028</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Diffusion ; A3. Metalorganic vapor phase epitaxy ; B2. Semiconducting III-V materials ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lasers ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Optics ; Physics ; Semiconductor lasers; laser diodes</subject><ispartof>Journal of crystal growth, 2006-12, Vol.297 (1), p.44-51</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323</citedby><cites>FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024806008669$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18346268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadoiwa, Kaoru</creatorcontrib><creatorcontrib>Ono, Kenichi</creatorcontrib><creatorcontrib>Ohkura, Yuji</creatorcontrib><title>Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD</title><title>Journal of crystal growth</title><description>Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios ( x) of (1− x)InP– xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio ( x) for the (1− x)InP– xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties. Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios ( x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.</description><subject>A1. Diffusion</subject><subject>A3. Metalorganic vapor phase epitaxy</subject><subject>B2. Semiconducting III-V materials</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optics</subject><subject>Physics</subject><subject>Semiconductor lasers; laser diodes</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPAzEQhC0EEuHxF5Ab6O5Y25c7uwOFVxAICqCgsXz2HnEUfGBfQPx7HAVESTPbzLejGUIOGJQMWH08L-c2fqWX2JccoC5BlcDlBhkx2YhiDMA3ySgrL4BXcpvspDQHyCSDEbl-DtT5rlsm3wfa4sx8-D5SM9BhhnQaLs1puj-ehns6wwFj70PWzlikOe8z0MyFF3p7N3k62yNbnVkk3P-5u-Tx4vxhclXc3F1OJ6c3ha2EGgqlWgnjxrXMyQpa5LWtTAuG8RY6MQbhcolGNk5IJlC1qgblqla6umFjJrjYJUfrv2-xf19iGvSrTxYXCxOwXybNpaokNFU21mujjX1KETv9Fv2riV-agV5Np-f6dzq9mk6D0nm6DB7-JJhkzaKLJlif_mgpqprXK9_J2oe57ofHqJP1GCw6H9EO2vX-v6hvAyOGnA</recordid><startdate>20061215</startdate><enddate>20061215</enddate><creator>Kadoiwa, Kaoru</creator><creator>Ono, Kenichi</creator><creator>Ohkura, Yuji</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20061215</creationdate><title>Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD</title><author>Kadoiwa, Kaoru ; Ono, Kenichi ; Ohkura, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>A1. Diffusion</topic><topic>A3. Metalorganic vapor phase epitaxy</topic><topic>B2. Semiconducting III-V materials</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optics</topic><topic>Physics</topic><topic>Semiconductor lasers; laser diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadoiwa, Kaoru</creatorcontrib><creatorcontrib>Ono, Kenichi</creatorcontrib><creatorcontrib>Ohkura, Yuji</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadoiwa, Kaoru</au><au>Ono, Kenichi</au><au>Ohkura, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD</atitle><jtitle>Journal of crystal growth</jtitle><date>2006-12-15</date><risdate>2006</risdate><volume>297</volume><issue>1</issue><spage>44</spage><epage>51</epage><pages>44-51</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios ( x) of (1− x)InP– xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio ( x) for the (1− x)InP– xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties. Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios ( x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2006.09.028</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2006-12, Vol.297 (1), p.44-51
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_28948074
source Elsevier ScienceDirect Journals Complete
subjects A1. Diffusion
A3. Metalorganic vapor phase epitaxy
B2. Semiconducting III-V materials
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lasers
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Optics
Physics
Semiconductor lasers
laser diodes
title Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zn%20diffusion%20behavior%20at%20the%20InGaAsP/InP%20heterointerface%20grown%20using%20MOCVD&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Kadoiwa,%20Kaoru&rft.date=2006-12-15&rft.volume=297&rft.issue=1&rft.spage=44&rft.epage=51&rft.pages=44-51&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2006.09.028&rft_dat=%3Cproquest_cross%3E28948074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28948074&rft_id=info:pmid/&rft_els_id=S0022024806008669&rfr_iscdi=true