A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)
A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular b...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular translational research 2024-06, Vol.17 (3), p.669-684 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 3 |
container_start_page | 669 |
container_title | Journal of cardiovascular translational research |
container_volume | 17 |
creator | Alam, Javed Khan, Mohammad Firoz Khan, Meraj Alam Singh, Rinky Mundazeer, Mohammed Kumar, Pramod |
description | A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference.
Graphical abstract |
doi_str_mv | 10.1007/s12265-023-10462-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2894722843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894722843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9abe12fa6aa0dbd3dd4964d6b0bed1236f0e9ec1507e3b003765d845eef087033</originalsourceid><addsrcrecordid>eNp9kU1u2zAQhYWiQfPTXqCLgst0oWZISqK0NAInDWCjBpKsCYocWQokUSUpwD5OblqqTrPsajjE995g5iXJVwo_KIC48ZSxIk-B8ZRCVrD08CG5oBUXac6r_OP7uxTnyaX3LwAFAyE-Jee8hKgo6UXyuiKPRx9wUKHTZDVNzirdkjurZ4-G2JFsY9-NSDao3NiNe7K1BntPGuvI-jD11i2foY2EGo3XakJiG7Jrj76zvd13WvVki8rPDgccA4kUWfvQLSOj_7Nf9LvWBjv1GKJssHunpvZIrne7---fk7NG9R6_vNWr5Plu_XT7M938un-4XW1SzTMR0krVSFmjCqXA1IYbk1VFZooaajSU8aIBrFDTHATyGoCLIjdlliM2UArg_Cq5PvnGE_ye0Qc5dF5j36sR7ewlK6tMMFZmC8pOqHbWe4eNnFxcxx0lBblEI0_RyBiN_BuNPETRtzf_uR7QvEv-ZREBfgL8tJwUnXyxsxvjzv-z_QMmoZ17</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894722843</pqid></control><display><type>article</type><title>A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Alam, Javed ; Khan, Mohammad Firoz ; Khan, Meraj Alam ; Singh, Rinky ; Mundazeer, Mohammed ; Kumar, Pramod</creator><creatorcontrib>Alam, Javed ; Khan, Mohammad Firoz ; Khan, Meraj Alam ; Singh, Rinky ; Mundazeer, Mohammed ; Kumar, Pramod</creatorcontrib><description>A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference.
Graphical abstract</description><identifier>ISSN: 1937-5387</identifier><identifier>ISSN: 1937-5395</identifier><identifier>EISSN: 1937-5395</identifier><identifier>DOI: 10.1007/s12265-023-10462-x</identifier><identifier>PMID: 38010481</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical Engineering and Bioengineering ; Biomedicine ; Blood Pressure - physiology ; Cardiology ; Diagnosis, Computer-Assisted ; Heart Rate ; Human Genetics ; Humans ; Hypertension - diagnosis ; Hypertension - physiopathology ; Machine Learning ; Medicine ; Medicine & Public Health ; Photoplethysmography ; Predictive Value of Tests ; Prognosis ; Reproducibility of Results ; Review ; Signal Processing, Computer-Assisted</subject><ispartof>Journal of cardiovascular translational research, 2024-06, Vol.17 (3), p.669-684</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9abe12fa6aa0dbd3dd4964d6b0bed1236f0e9ec1507e3b003765d845eef087033</citedby><cites>FETCH-LOGICAL-c347t-9abe12fa6aa0dbd3dd4964d6b0bed1236f0e9ec1507e3b003765d845eef087033</cites><orcidid>0000-0002-0176-2328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12265-023-10462-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12265-023-10462-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38010481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alam, Javed</creatorcontrib><creatorcontrib>Khan, Mohammad Firoz</creatorcontrib><creatorcontrib>Khan, Meraj Alam</creatorcontrib><creatorcontrib>Singh, Rinky</creatorcontrib><creatorcontrib>Mundazeer, Mohammed</creatorcontrib><creatorcontrib>Kumar, Pramod</creatorcontrib><title>A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)</title><title>Journal of cardiovascular translational research</title><addtitle>J. of Cardiovasc. Trans. Res</addtitle><addtitle>J Cardiovasc Transl Res</addtitle><description>A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference.
Graphical abstract</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Blood Pressure - physiology</subject><subject>Cardiology</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Heart Rate</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hypertension - diagnosis</subject><subject>Hypertension - physiopathology</subject><subject>Machine Learning</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Photoplethysmography</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Reproducibility of Results</subject><subject>Review</subject><subject>Signal Processing, Computer-Assisted</subject><issn>1937-5387</issn><issn>1937-5395</issn><issn>1937-5395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1u2zAQhYWiQfPTXqCLgst0oWZISqK0NAInDWCjBpKsCYocWQokUSUpwD5OblqqTrPsajjE995g5iXJVwo_KIC48ZSxIk-B8ZRCVrD08CG5oBUXac6r_OP7uxTnyaX3LwAFAyE-Jee8hKgo6UXyuiKPRx9wUKHTZDVNzirdkjurZ4-G2JFsY9-NSDao3NiNe7K1BntPGuvI-jD11i2foY2EGo3XakJiG7Jrj76zvd13WvVki8rPDgccA4kUWfvQLSOj_7Nf9LvWBjv1GKJssHunpvZIrne7---fk7NG9R6_vNWr5Plu_XT7M938un-4XW1SzTMR0krVSFmjCqXA1IYbk1VFZooaajSU8aIBrFDTHATyGoCLIjdlliM2UArg_Cq5PvnGE_ye0Qc5dF5j36sR7ewlK6tMMFZmC8pOqHbWe4eNnFxcxx0lBblEI0_RyBiN_BuNPETRtzf_uR7QvEv-ZREBfgL8tJwUnXyxsxvjzv-z_QMmoZ17</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Alam, Javed</creator><creator>Khan, Mohammad Firoz</creator><creator>Khan, Meraj Alam</creator><creator>Singh, Rinky</creator><creator>Mundazeer, Mohammed</creator><creator>Kumar, Pramod</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0176-2328</orcidid></search><sort><creationdate>20240601</creationdate><title>A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)</title><author>Alam, Javed ; Khan, Mohammad Firoz ; Khan, Meraj Alam ; Singh, Rinky ; Mundazeer, Mohammed ; Kumar, Pramod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9abe12fa6aa0dbd3dd4964d6b0bed1236f0e9ec1507e3b003765d845eef087033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Blood Pressure - physiology</topic><topic>Cardiology</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Heart Rate</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hypertension - diagnosis</topic><topic>Hypertension - physiopathology</topic><topic>Machine Learning</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Photoplethysmography</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Reproducibility of Results</topic><topic>Review</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Javed</creatorcontrib><creatorcontrib>Khan, Mohammad Firoz</creatorcontrib><creatorcontrib>Khan, Meraj Alam</creatorcontrib><creatorcontrib>Singh, Rinky</creatorcontrib><creatorcontrib>Mundazeer, Mohammed</creatorcontrib><creatorcontrib>Kumar, Pramod</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular translational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Javed</au><au>Khan, Mohammad Firoz</au><au>Khan, Meraj Alam</au><au>Singh, Rinky</au><au>Mundazeer, Mohammed</au><au>Kumar, Pramod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)</atitle><jtitle>Journal of cardiovascular translational research</jtitle><stitle>J. of Cardiovasc. Trans. Res</stitle><addtitle>J Cardiovasc Transl Res</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>17</volume><issue>3</issue><spage>669</spage><epage>684</epage><pages>669-684</pages><issn>1937-5387</issn><issn>1937-5395</issn><eissn>1937-5395</eissn><abstract>A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38010481</pmid><doi>10.1007/s12265-023-10462-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0176-2328</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-5387 |
ispartof | Journal of cardiovascular translational research, 2024-06, Vol.17 (3), p.669-684 |
issn | 1937-5387 1937-5395 1937-5395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2894722843 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Biomedical Engineering and Bioengineering Biomedicine Blood Pressure - physiology Cardiology Diagnosis, Computer-Assisted Heart Rate Human Genetics Humans Hypertension - diagnosis Hypertension - physiopathology Machine Learning Medicine Medicine & Public Health Photoplethysmography Predictive Value of Tests Prognosis Reproducibility of Results Review Signal Processing, Computer-Assisted |
title | A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systematic%20Approach%20Focused%20on%20Machine%20Learning%20Models%20for%20Exploring%20the%20Landscape%20of%20Physiological%20Measurement%20and%20Estimation%20Using%20Photoplethysmography%20(PPG)&rft.jtitle=Journal%20of%20cardiovascular%20translational%20research&rft.au=Alam,%20Javed&rft.date=2024-06-01&rft.volume=17&rft.issue=3&rft.spage=669&rft.epage=684&rft.pages=669-684&rft.issn=1937-5387&rft.eissn=1937-5395&rft_id=info:doi/10.1007/s12265-023-10462-x&rft_dat=%3Cproquest_cross%3E2894722843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894722843&rft_id=info:pmid/38010481&rfr_iscdi=true |