A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)

A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular translational research 2024-06, Vol.17 (3), p.669-684
Hauptverfasser: Alam, Javed, Khan, Mohammad Firoz, Khan, Meraj Alam, Singh, Rinky, Mundazeer, Mohammed, Kumar, Pramod
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 3
container_start_page 669
container_title Journal of cardiovascular translational research
container_volume 17
creator Alam, Javed
Khan, Mohammad Firoz
Khan, Meraj Alam
Singh, Rinky
Mundazeer, Mohammed
Kumar, Pramod
description A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference. Graphical abstract
doi_str_mv 10.1007/s12265-023-10462-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2894722843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894722843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9abe12fa6aa0dbd3dd4964d6b0bed1236f0e9ec1507e3b003765d845eef087033</originalsourceid><addsrcrecordid>eNp9kU1u2zAQhYWiQfPTXqCLgst0oWZISqK0NAInDWCjBpKsCYocWQokUSUpwD5OblqqTrPsajjE995g5iXJVwo_KIC48ZSxIk-B8ZRCVrD08CG5oBUXac6r_OP7uxTnyaX3LwAFAyE-Jee8hKgo6UXyuiKPRx9wUKHTZDVNzirdkjurZ4-G2JFsY9-NSDao3NiNe7K1BntPGuvI-jD11i2foY2EGo3XakJiG7Jrj76zvd13WvVki8rPDgccA4kUWfvQLSOj_7Nf9LvWBjv1GKJssHunpvZIrne7---fk7NG9R6_vNWr5Plu_XT7M938un-4XW1SzTMR0krVSFmjCqXA1IYbk1VFZooaajSU8aIBrFDTHATyGoCLIjdlliM2UArg_Cq5PvnGE_ye0Qc5dF5j36sR7ewlK6tMMFZmC8pOqHbWe4eNnFxcxx0lBblEI0_RyBiN_BuNPETRtzf_uR7QvEv-ZREBfgL8tJwUnXyxsxvjzv-z_QMmoZ17</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894722843</pqid></control><display><type>article</type><title>A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Alam, Javed ; Khan, Mohammad Firoz ; Khan, Meraj Alam ; Singh, Rinky ; Mundazeer, Mohammed ; Kumar, Pramod</creator><creatorcontrib>Alam, Javed ; Khan, Mohammad Firoz ; Khan, Meraj Alam ; Singh, Rinky ; Mundazeer, Mohammed ; Kumar, Pramod</creatorcontrib><description>A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference. Graphical abstract</description><identifier>ISSN: 1937-5387</identifier><identifier>ISSN: 1937-5395</identifier><identifier>EISSN: 1937-5395</identifier><identifier>DOI: 10.1007/s12265-023-10462-x</identifier><identifier>PMID: 38010481</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical Engineering and Bioengineering ; Biomedicine ; Blood Pressure - physiology ; Cardiology ; Diagnosis, Computer-Assisted ; Heart Rate ; Human Genetics ; Humans ; Hypertension - diagnosis ; Hypertension - physiopathology ; Machine Learning ; Medicine ; Medicine &amp; Public Health ; Photoplethysmography ; Predictive Value of Tests ; Prognosis ; Reproducibility of Results ; Review ; Signal Processing, Computer-Assisted</subject><ispartof>Journal of cardiovascular translational research, 2024-06, Vol.17 (3), p.669-684</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9abe12fa6aa0dbd3dd4964d6b0bed1236f0e9ec1507e3b003765d845eef087033</citedby><cites>FETCH-LOGICAL-c347t-9abe12fa6aa0dbd3dd4964d6b0bed1236f0e9ec1507e3b003765d845eef087033</cites><orcidid>0000-0002-0176-2328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12265-023-10462-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12265-023-10462-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38010481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alam, Javed</creatorcontrib><creatorcontrib>Khan, Mohammad Firoz</creatorcontrib><creatorcontrib>Khan, Meraj Alam</creatorcontrib><creatorcontrib>Singh, Rinky</creatorcontrib><creatorcontrib>Mundazeer, Mohammed</creatorcontrib><creatorcontrib>Kumar, Pramod</creatorcontrib><title>A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)</title><title>Journal of cardiovascular translational research</title><addtitle>J. of Cardiovasc. Trans. Res</addtitle><addtitle>J Cardiovasc Transl Res</addtitle><description>A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference. Graphical abstract</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Blood Pressure - physiology</subject><subject>Cardiology</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Heart Rate</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hypertension - diagnosis</subject><subject>Hypertension - physiopathology</subject><subject>Machine Learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Photoplethysmography</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Reproducibility of Results</subject><subject>Review</subject><subject>Signal Processing, Computer-Assisted</subject><issn>1937-5387</issn><issn>1937-5395</issn><issn>1937-5395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1u2zAQhYWiQfPTXqCLgst0oWZISqK0NAInDWCjBpKsCYocWQokUSUpwD5OblqqTrPsajjE995g5iXJVwo_KIC48ZSxIk-B8ZRCVrD08CG5oBUXac6r_OP7uxTnyaX3LwAFAyE-Jee8hKgo6UXyuiKPRx9wUKHTZDVNzirdkjurZ4-G2JFsY9-NSDao3NiNe7K1BntPGuvI-jD11i2foY2EGo3XakJiG7Jrj76zvd13WvVki8rPDgccA4kUWfvQLSOj_7Nf9LvWBjv1GKJssHunpvZIrne7---fk7NG9R6_vNWr5Plu_XT7M938un-4XW1SzTMR0krVSFmjCqXA1IYbk1VFZooaajSU8aIBrFDTHATyGoCLIjdlliM2UArg_Cq5PvnGE_ye0Qc5dF5j36sR7ewlK6tMMFZmC8pOqHbWe4eNnFxcxx0lBblEI0_RyBiN_BuNPETRtzf_uR7QvEv-ZREBfgL8tJwUnXyxsxvjzv-z_QMmoZ17</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Alam, Javed</creator><creator>Khan, Mohammad Firoz</creator><creator>Khan, Meraj Alam</creator><creator>Singh, Rinky</creator><creator>Mundazeer, Mohammed</creator><creator>Kumar, Pramod</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0176-2328</orcidid></search><sort><creationdate>20240601</creationdate><title>A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)</title><author>Alam, Javed ; Khan, Mohammad Firoz ; Khan, Meraj Alam ; Singh, Rinky ; Mundazeer, Mohammed ; Kumar, Pramod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9abe12fa6aa0dbd3dd4964d6b0bed1236f0e9ec1507e3b003765d845eef087033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Blood Pressure - physiology</topic><topic>Cardiology</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Heart Rate</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hypertension - diagnosis</topic><topic>Hypertension - physiopathology</topic><topic>Machine Learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Photoplethysmography</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Reproducibility of Results</topic><topic>Review</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Javed</creatorcontrib><creatorcontrib>Khan, Mohammad Firoz</creatorcontrib><creatorcontrib>Khan, Meraj Alam</creatorcontrib><creatorcontrib>Singh, Rinky</creatorcontrib><creatorcontrib>Mundazeer, Mohammed</creatorcontrib><creatorcontrib>Kumar, Pramod</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular translational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Javed</au><au>Khan, Mohammad Firoz</au><au>Khan, Meraj Alam</au><au>Singh, Rinky</au><au>Mundazeer, Mohammed</au><au>Kumar, Pramod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)</atitle><jtitle>Journal of cardiovascular translational research</jtitle><stitle>J. of Cardiovasc. Trans. Res</stitle><addtitle>J Cardiovasc Transl Res</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>17</volume><issue>3</issue><spage>669</spage><epage>684</epage><pages>669-684</pages><issn>1937-5387</issn><issn>1937-5395</issn><eissn>1937-5395</eissn><abstract>A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38010481</pmid><doi>10.1007/s12265-023-10462-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0176-2328</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1937-5387
ispartof Journal of cardiovascular translational research, 2024-06, Vol.17 (3), p.669-684
issn 1937-5387
1937-5395
1937-5395
language eng
recordid cdi_proquest_miscellaneous_2894722843
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Biomedical Engineering and Bioengineering
Biomedicine
Blood Pressure - physiology
Cardiology
Diagnosis, Computer-Assisted
Heart Rate
Human Genetics
Humans
Hypertension - diagnosis
Hypertension - physiopathology
Machine Learning
Medicine
Medicine & Public Health
Photoplethysmography
Predictive Value of Tests
Prognosis
Reproducibility of Results
Review
Signal Processing, Computer-Assisted
title A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systematic%20Approach%20Focused%20on%20Machine%20Learning%20Models%20for%20Exploring%20the%20Landscape%20of%20Physiological%20Measurement%20and%20Estimation%20Using%20Photoplethysmography%20(PPG)&rft.jtitle=Journal%20of%20cardiovascular%20translational%20research&rft.au=Alam,%20Javed&rft.date=2024-06-01&rft.volume=17&rft.issue=3&rft.spage=669&rft.epage=684&rft.pages=669-684&rft.issn=1937-5387&rft.eissn=1937-5395&rft_id=info:doi/10.1007/s12265-023-10462-x&rft_dat=%3Cproquest_cross%3E2894722843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894722843&rft_id=info:pmid/38010481&rfr_iscdi=true