A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors

Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-01, Vol.63 (3), p.e202313591-n/a
Hauptverfasser: Huang, Chuanhui, Sun, Weiming, Jin, Yingxue, Guo, Quanquan, Mücke, David, Chu, Xingyuan, Liao, Zhongquan, Chandrasekhar, Naisa, Huang, Xing, Lu, Yang, Chen, Guangbo, Wang, Mingchao, Liu, Jinxin, Zhang, Geping, Yu, Minghao, Qi, Haoyuan, Kaiser, Ute, Xu, Gang, Feng, Xinliang, Dong, Renhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e202313591
container_title Angewandte Chemie International Edition
container_volume 63
creator Huang, Chuanhui
Sun, Weiming
Jin, Yingxue
Guo, Quanquan
Mücke, David
Chu, Xingyuan
Liao, Zhongquan
Chandrasekhar, Naisa
Huang, Xing
Lu, Yang
Chen, Guangbo
Wang, Mingchao
Liu, Jinxin
Zhang, Geping
Yu, Minghao
Qi, Haoyuan
Kaiser, Ute
Xu, Gang
Feng, Xinliang
Dong, Renhao
description Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c‐MOFs, the controlled synthesis of hierarchically nanostructured 2D c‐MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c‐MOFs with controlled morphologies and dimensions via insulating MOFs‐to‐c‐MOFs transformations. The resultant hierarchically nanostructured 2D c‐MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk‐type 2D c‐MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof‐of‐concept applications, the hierarchically nanostructured 2D c‐MOFs exhibit a superior performance for electrical properties related applications (hollow Cu‐BHT nanocubes‐based supercapacitor and Cu‐HHB nanoflowers‐based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c‐MOFs, respectively. A template strategy has been developed for the general synthesis of hierarchically nanostructured 2D conjugated metal–organic frameworks (2D c‐MOFs) with high crystallinity, tailored morphologies, and high porosity via insulating MOFs‐to‐c‐MOFs transformations. These nanostructured 2D c‐MOFs show great potential in supercapacitors and chemiresistive H2S sensors.
doi_str_mv 10.1002/anie.202313591
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2894721513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911628025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-f728a14dca18c67bb95f3ec79b1adc184a1dadc946090d4323a78fc8dae91a4b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEon_gyhFZ4sIli8dONvZxteqWldou0sI5mjiTNiWxFztptTe-A6d-PT4JDluKxIWTnzy_eW-klyRvgM-Ac_EBbUszwYUEmWt4lhxDLiCVRSGfR51JmRYqh6PkJITbyCvF5y-TI6k4AAd-nDws2DlZ8tix7d4ONxTawFzDrtC6MPjRDKOnmi2draNu74hd0oDdz-8_Nv46hhu28tjTvfNfA2u869nahrHDobXX7HKzYp88mdEH5-PYebYdd-QN7tC0w_SHNprfUN_6Kfl3wJbshL9KXjTYBXr9-J4mX1Znn5cf04vN-Xq5uEiNLCSkTSEUQlYbBGXmRVXpvJFkCl0B1gZUhlBHobM517zOpJBYqMaoGkkDZpU8Td4ffHfefRspDGXfBkNdh5bcGEqhdFYIyEFG9N0_6K0bvY3XlUIDzIXiIo_U7EAZ70Lw1JQ73_bo9yXwciqtnEorn0qLC28fbceqp_oJ_9NSBPQBuG872v_Hrlxcrc_-mv8CLJGnzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911628025</pqid></control><display><type>article</type><title>A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Chuanhui ; Sun, Weiming ; Jin, Yingxue ; Guo, Quanquan ; Mücke, David ; Chu, Xingyuan ; Liao, Zhongquan ; Chandrasekhar, Naisa ; Huang, Xing ; Lu, Yang ; Chen, Guangbo ; Wang, Mingchao ; Liu, Jinxin ; Zhang, Geping ; Yu, Minghao ; Qi, Haoyuan ; Kaiser, Ute ; Xu, Gang ; Feng, Xinliang ; Dong, Renhao</creator><creatorcontrib>Huang, Chuanhui ; Sun, Weiming ; Jin, Yingxue ; Guo, Quanquan ; Mücke, David ; Chu, Xingyuan ; Liao, Zhongquan ; Chandrasekhar, Naisa ; Huang, Xing ; Lu, Yang ; Chen, Guangbo ; Wang, Mingchao ; Liu, Jinxin ; Zhang, Geping ; Yu, Minghao ; Qi, Haoyuan ; Kaiser, Ute ; Xu, Gang ; Feng, Xinliang ; Dong, Renhao</creatorcontrib><description>Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c‐MOFs, the controlled synthesis of hierarchically nanostructured 2D c‐MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c‐MOFs with controlled morphologies and dimensions via insulating MOFs‐to‐c‐MOFs transformations. The resultant hierarchically nanostructured 2D c‐MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk‐type 2D c‐MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof‐of‐concept applications, the hierarchically nanostructured 2D c‐MOFs exhibit a superior performance for electrical properties related applications (hollow Cu‐BHT nanocubes‐based supercapacitor and Cu‐HHB nanoflowers‐based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c‐MOFs, respectively. A template strategy has been developed for the general synthesis of hierarchically nanostructured 2D conjugated metal–organic frameworks (2D c‐MOFs) with high crystallinity, tailored morphologies, and high porosity via insulating MOFs‐to‐c‐MOFs transformations. These nanostructured 2D c‐MOFs show great potential in supercapacitors and chemiresistive H2S sensors.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202313591</identifier><identifier>PMID: 38011010</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemiresistive Sensor ; Conductive 2D MOFs ; Coordination polymers ; Copper ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Electronic equipment ; Electronic properties ; Gas sensors ; Hierarchical Nanostructure ; Insulation ; Mass transport ; Metal-organic frameworks ; Morphology ; Nanostructure ; Polymers ; Specific capacity ; Supercapacitor ; Supercapacitors ; Synthesis ; Template Strategy</subject><ispartof>Angewandte Chemie International Edition, 2024-01, Vol.63 (3), p.e202313591-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-f728a14dca18c67bb95f3ec79b1adc184a1dadc946090d4323a78fc8dae91a4b3</citedby><cites>FETCH-LOGICAL-c3731-f728a14dca18c67bb95f3ec79b1adc184a1dadc946090d4323a78fc8dae91a4b3</cites><orcidid>0000-0002-4125-9284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202313591$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202313591$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38011010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chuanhui</creatorcontrib><creatorcontrib>Sun, Weiming</creatorcontrib><creatorcontrib>Jin, Yingxue</creatorcontrib><creatorcontrib>Guo, Quanquan</creatorcontrib><creatorcontrib>Mücke, David</creatorcontrib><creatorcontrib>Chu, Xingyuan</creatorcontrib><creatorcontrib>Liao, Zhongquan</creatorcontrib><creatorcontrib>Chandrasekhar, Naisa</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Chen, Guangbo</creatorcontrib><creatorcontrib>Wang, Mingchao</creatorcontrib><creatorcontrib>Liu, Jinxin</creatorcontrib><creatorcontrib>Zhang, Geping</creatorcontrib><creatorcontrib>Yu, Minghao</creatorcontrib><creatorcontrib>Qi, Haoyuan</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><title>A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c‐MOFs, the controlled synthesis of hierarchically nanostructured 2D c‐MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c‐MOFs with controlled morphologies and dimensions via insulating MOFs‐to‐c‐MOFs transformations. The resultant hierarchically nanostructured 2D c‐MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk‐type 2D c‐MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof‐of‐concept applications, the hierarchically nanostructured 2D c‐MOFs exhibit a superior performance for electrical properties related applications (hollow Cu‐BHT nanocubes‐based supercapacitor and Cu‐HHB nanoflowers‐based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c‐MOFs, respectively. A template strategy has been developed for the general synthesis of hierarchically nanostructured 2D conjugated metal–organic frameworks (2D c‐MOFs) with high crystallinity, tailored morphologies, and high porosity via insulating MOFs‐to‐c‐MOFs transformations. These nanostructured 2D c‐MOFs show great potential in supercapacitors and chemiresistive H2S sensors.</description><subject>Chemiresistive Sensor</subject><subject>Conductive 2D MOFs</subject><subject>Coordination polymers</subject><subject>Copper</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electronic equipment</subject><subject>Electronic properties</subject><subject>Gas sensors</subject><subject>Hierarchical Nanostructure</subject><subject>Insulation</subject><subject>Mass transport</subject><subject>Metal-organic frameworks</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Polymers</subject><subject>Specific capacity</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>Template Strategy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU9v1DAQxSMEon_gyhFZ4sIli8dONvZxteqWldou0sI5mjiTNiWxFztptTe-A6d-PT4JDluKxIWTnzy_eW-klyRvgM-Ac_EBbUszwYUEmWt4lhxDLiCVRSGfR51JmRYqh6PkJITbyCvF5y-TI6k4AAd-nDws2DlZ8tix7d4ONxTawFzDrtC6MPjRDKOnmi2draNu74hd0oDdz-8_Nv46hhu28tjTvfNfA2u869nahrHDobXX7HKzYp88mdEH5-PYebYdd-QN7tC0w_SHNprfUN_6Kfl3wJbshL9KXjTYBXr9-J4mX1Znn5cf04vN-Xq5uEiNLCSkTSEUQlYbBGXmRVXpvJFkCl0B1gZUhlBHobM517zOpJBYqMaoGkkDZpU8Td4ffHfefRspDGXfBkNdh5bcGEqhdFYIyEFG9N0_6K0bvY3XlUIDzIXiIo_U7EAZ70Lw1JQ73_bo9yXwciqtnEorn0qLC28fbceqp_oJ_9NSBPQBuG872v_Hrlxcrc_-mv8CLJGnzg</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Huang, Chuanhui</creator><creator>Sun, Weiming</creator><creator>Jin, Yingxue</creator><creator>Guo, Quanquan</creator><creator>Mücke, David</creator><creator>Chu, Xingyuan</creator><creator>Liao, Zhongquan</creator><creator>Chandrasekhar, Naisa</creator><creator>Huang, Xing</creator><creator>Lu, Yang</creator><creator>Chen, Guangbo</creator><creator>Wang, Mingchao</creator><creator>Liu, Jinxin</creator><creator>Zhang, Geping</creator><creator>Yu, Minghao</creator><creator>Qi, Haoyuan</creator><creator>Kaiser, Ute</creator><creator>Xu, Gang</creator><creator>Feng, Xinliang</creator><creator>Dong, Renhao</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4125-9284</orcidid></search><sort><creationdate>20240115</creationdate><title>A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors</title><author>Huang, Chuanhui ; Sun, Weiming ; Jin, Yingxue ; Guo, Quanquan ; Mücke, David ; Chu, Xingyuan ; Liao, Zhongquan ; Chandrasekhar, Naisa ; Huang, Xing ; Lu, Yang ; Chen, Guangbo ; Wang, Mingchao ; Liu, Jinxin ; Zhang, Geping ; Yu, Minghao ; Qi, Haoyuan ; Kaiser, Ute ; Xu, Gang ; Feng, Xinliang ; Dong, Renhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-f728a14dca18c67bb95f3ec79b1adc184a1dadc946090d4323a78fc8dae91a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemiresistive Sensor</topic><topic>Conductive 2D MOFs</topic><topic>Coordination polymers</topic><topic>Copper</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electronic equipment</topic><topic>Electronic properties</topic><topic>Gas sensors</topic><topic>Hierarchical Nanostructure</topic><topic>Insulation</topic><topic>Mass transport</topic><topic>Metal-organic frameworks</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Polymers</topic><topic>Specific capacity</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>Template Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chuanhui</creatorcontrib><creatorcontrib>Sun, Weiming</creatorcontrib><creatorcontrib>Jin, Yingxue</creatorcontrib><creatorcontrib>Guo, Quanquan</creatorcontrib><creatorcontrib>Mücke, David</creatorcontrib><creatorcontrib>Chu, Xingyuan</creatorcontrib><creatorcontrib>Liao, Zhongquan</creatorcontrib><creatorcontrib>Chandrasekhar, Naisa</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Chen, Guangbo</creatorcontrib><creatorcontrib>Wang, Mingchao</creatorcontrib><creatorcontrib>Liu, Jinxin</creatorcontrib><creatorcontrib>Zhang, Geping</creatorcontrib><creatorcontrib>Yu, Minghao</creatorcontrib><creatorcontrib>Qi, Haoyuan</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chuanhui</au><au>Sun, Weiming</au><au>Jin, Yingxue</au><au>Guo, Quanquan</au><au>Mücke, David</au><au>Chu, Xingyuan</au><au>Liao, Zhongquan</au><au>Chandrasekhar, Naisa</au><au>Huang, Xing</au><au>Lu, Yang</au><au>Chen, Guangbo</au><au>Wang, Mingchao</au><au>Liu, Jinxin</au><au>Zhang, Geping</au><au>Yu, Minghao</au><au>Qi, Haoyuan</au><au>Kaiser, Ute</au><au>Xu, Gang</au><au>Feng, Xinliang</au><au>Dong, Renhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-01-15</date><risdate>2024</risdate><volume>63</volume><issue>3</issue><spage>e202313591</spage><epage>n/a</epage><pages>e202313591-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c‐MOFs, the controlled synthesis of hierarchically nanostructured 2D c‐MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c‐MOFs with controlled morphologies and dimensions via insulating MOFs‐to‐c‐MOFs transformations. The resultant hierarchically nanostructured 2D c‐MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk‐type 2D c‐MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof‐of‐concept applications, the hierarchically nanostructured 2D c‐MOFs exhibit a superior performance for electrical properties related applications (hollow Cu‐BHT nanocubes‐based supercapacitor and Cu‐HHB nanoflowers‐based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c‐MOFs, respectively. A template strategy has been developed for the general synthesis of hierarchically nanostructured 2D conjugated metal–organic frameworks (2D c‐MOFs) with high crystallinity, tailored morphologies, and high porosity via insulating MOFs‐to‐c‐MOFs transformations. These nanostructured 2D c‐MOFs show great potential in supercapacitors and chemiresistive H2S sensors.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38011010</pmid><doi>10.1002/anie.202313591</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4125-9284</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-01, Vol.63 (3), p.e202313591-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2894721513
source Wiley Online Library Journals Frontfile Complete
subjects Chemiresistive Sensor
Conductive 2D MOFs
Coordination polymers
Copper
Electrical conductivity
Electrical properties
Electrical resistivity
Electronic equipment
Electronic properties
Gas sensors
Hierarchical Nanostructure
Insulation
Mass transport
Metal-organic frameworks
Morphology
Nanostructure
Polymers
Specific capacity
Supercapacitor
Supercapacitors
Synthesis
Template Strategy
title A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Synthesis%20of%20Nanostructured%20Conductive%20Metal%E2%80%93Organic%20Frameworks%20from%20Insulating%20MOF%20Precursors%20for%20Supercapacitors%20and%20Chemiresistive%20Sensors&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Huang,%20Chuanhui&rft.date=2024-01-15&rft.volume=63&rft.issue=3&rft.spage=e202313591&rft.epage=n/a&rft.pages=e202313591-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202313591&rft_dat=%3Cproquest_cross%3E2911628025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911628025&rft_id=info:pmid/38011010&rfr_iscdi=true