A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors
Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make t...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-01, Vol.63 (3), p.e202313591-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e202313591 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Huang, Chuanhui Sun, Weiming Jin, Yingxue Guo, Quanquan Mücke, David Chu, Xingyuan Liao, Zhongquan Chandrasekhar, Naisa Huang, Xing Lu, Yang Chen, Guangbo Wang, Mingchao Liu, Jinxin Zhang, Geping Yu, Minghao Qi, Haoyuan Kaiser, Ute Xu, Gang Feng, Xinliang Dong, Renhao |
description | Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c‐MOFs, the controlled synthesis of hierarchically nanostructured 2D c‐MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c‐MOFs with controlled morphologies and dimensions via insulating MOFs‐to‐c‐MOFs transformations. The resultant hierarchically nanostructured 2D c‐MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk‐type 2D c‐MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof‐of‐concept applications, the hierarchically nanostructured 2D c‐MOFs exhibit a superior performance for electrical properties related applications (hollow Cu‐BHT nanocubes‐based supercapacitor and Cu‐HHB nanoflowers‐based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c‐MOFs, respectively.
A template strategy has been developed for the general synthesis of hierarchically nanostructured 2D conjugated metal–organic frameworks (2D c‐MOFs) with high crystallinity, tailored morphologies, and high porosity via insulating MOFs‐to‐c‐MOFs transformations. These nanostructured 2D c‐MOFs show great potential in supercapacitors and chemiresistive H2S sensors. |
doi_str_mv | 10.1002/anie.202313591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2894721513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911628025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-f728a14dca18c67bb95f3ec79b1adc184a1dadc946090d4323a78fc8dae91a4b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEon_gyhFZ4sIli8dONvZxteqWldou0sI5mjiTNiWxFztptTe-A6d-PT4JDluKxIWTnzy_eW-klyRvgM-Ac_EBbUszwYUEmWt4lhxDLiCVRSGfR51JmRYqh6PkJITbyCvF5y-TI6k4AAd-nDws2DlZ8tix7d4ONxTawFzDrtC6MPjRDKOnmi2draNu74hd0oDdz-8_Nv46hhu28tjTvfNfA2u869nahrHDobXX7HKzYp88mdEH5-PYebYdd-QN7tC0w_SHNprfUN_6Kfl3wJbshL9KXjTYBXr9-J4mX1Znn5cf04vN-Xq5uEiNLCSkTSEUQlYbBGXmRVXpvJFkCl0B1gZUhlBHobM517zOpJBYqMaoGkkDZpU8Td4ffHfefRspDGXfBkNdh5bcGEqhdFYIyEFG9N0_6K0bvY3XlUIDzIXiIo_U7EAZ70Lw1JQ73_bo9yXwciqtnEorn0qLC28fbceqp_oJ_9NSBPQBuG872v_Hrlxcrc_-mv8CLJGnzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911628025</pqid></control><display><type>article</type><title>A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Chuanhui ; Sun, Weiming ; Jin, Yingxue ; Guo, Quanquan ; Mücke, David ; Chu, Xingyuan ; Liao, Zhongquan ; Chandrasekhar, Naisa ; Huang, Xing ; Lu, Yang ; Chen, Guangbo ; Wang, Mingchao ; Liu, Jinxin ; Zhang, Geping ; Yu, Minghao ; Qi, Haoyuan ; Kaiser, Ute ; Xu, Gang ; Feng, Xinliang ; Dong, Renhao</creator><creatorcontrib>Huang, Chuanhui ; Sun, Weiming ; Jin, Yingxue ; Guo, Quanquan ; Mücke, David ; Chu, Xingyuan ; Liao, Zhongquan ; Chandrasekhar, Naisa ; Huang, Xing ; Lu, Yang ; Chen, Guangbo ; Wang, Mingchao ; Liu, Jinxin ; Zhang, Geping ; Yu, Minghao ; Qi, Haoyuan ; Kaiser, Ute ; Xu, Gang ; Feng, Xinliang ; Dong, Renhao</creatorcontrib><description>Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c‐MOFs, the controlled synthesis of hierarchically nanostructured 2D c‐MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c‐MOFs with controlled morphologies and dimensions via insulating MOFs‐to‐c‐MOFs transformations. The resultant hierarchically nanostructured 2D c‐MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk‐type 2D c‐MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof‐of‐concept applications, the hierarchically nanostructured 2D c‐MOFs exhibit a superior performance for electrical properties related applications (hollow Cu‐BHT nanocubes‐based supercapacitor and Cu‐HHB nanoflowers‐based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c‐MOFs, respectively.
A template strategy has been developed for the general synthesis of hierarchically nanostructured 2D conjugated metal–organic frameworks (2D c‐MOFs) with high crystallinity, tailored morphologies, and high porosity via insulating MOFs‐to‐c‐MOFs transformations. These nanostructured 2D c‐MOFs show great potential in supercapacitors and chemiresistive H2S sensors.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202313591</identifier><identifier>PMID: 38011010</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemiresistive Sensor ; Conductive 2D MOFs ; Coordination polymers ; Copper ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Electronic equipment ; Electronic properties ; Gas sensors ; Hierarchical Nanostructure ; Insulation ; Mass transport ; Metal-organic frameworks ; Morphology ; Nanostructure ; Polymers ; Specific capacity ; Supercapacitor ; Supercapacitors ; Synthesis ; Template Strategy</subject><ispartof>Angewandte Chemie International Edition, 2024-01, Vol.63 (3), p.e202313591-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-f728a14dca18c67bb95f3ec79b1adc184a1dadc946090d4323a78fc8dae91a4b3</citedby><cites>FETCH-LOGICAL-c3731-f728a14dca18c67bb95f3ec79b1adc184a1dadc946090d4323a78fc8dae91a4b3</cites><orcidid>0000-0002-4125-9284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202313591$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202313591$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38011010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chuanhui</creatorcontrib><creatorcontrib>Sun, Weiming</creatorcontrib><creatorcontrib>Jin, Yingxue</creatorcontrib><creatorcontrib>Guo, Quanquan</creatorcontrib><creatorcontrib>Mücke, David</creatorcontrib><creatorcontrib>Chu, Xingyuan</creatorcontrib><creatorcontrib>Liao, Zhongquan</creatorcontrib><creatorcontrib>Chandrasekhar, Naisa</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Chen, Guangbo</creatorcontrib><creatorcontrib>Wang, Mingchao</creatorcontrib><creatorcontrib>Liu, Jinxin</creatorcontrib><creatorcontrib>Zhang, Geping</creatorcontrib><creatorcontrib>Yu, Minghao</creatorcontrib><creatorcontrib>Qi, Haoyuan</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><title>A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c‐MOFs, the controlled synthesis of hierarchically nanostructured 2D c‐MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c‐MOFs with controlled morphologies and dimensions via insulating MOFs‐to‐c‐MOFs transformations. The resultant hierarchically nanostructured 2D c‐MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk‐type 2D c‐MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof‐of‐concept applications, the hierarchically nanostructured 2D c‐MOFs exhibit a superior performance for electrical properties related applications (hollow Cu‐BHT nanocubes‐based supercapacitor and Cu‐HHB nanoflowers‐based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c‐MOFs, respectively.
A template strategy has been developed for the general synthesis of hierarchically nanostructured 2D conjugated metal–organic frameworks (2D c‐MOFs) with high crystallinity, tailored morphologies, and high porosity via insulating MOFs‐to‐c‐MOFs transformations. These nanostructured 2D c‐MOFs show great potential in supercapacitors and chemiresistive H2S sensors.</description><subject>Chemiresistive Sensor</subject><subject>Conductive 2D MOFs</subject><subject>Coordination polymers</subject><subject>Copper</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electronic equipment</subject><subject>Electronic properties</subject><subject>Gas sensors</subject><subject>Hierarchical Nanostructure</subject><subject>Insulation</subject><subject>Mass transport</subject><subject>Metal-organic frameworks</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Polymers</subject><subject>Specific capacity</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>Template Strategy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU9v1DAQxSMEon_gyhFZ4sIli8dONvZxteqWldou0sI5mjiTNiWxFztptTe-A6d-PT4JDluKxIWTnzy_eW-klyRvgM-Ac_EBbUszwYUEmWt4lhxDLiCVRSGfR51JmRYqh6PkJITbyCvF5y-TI6k4AAd-nDws2DlZ8tix7d4ONxTawFzDrtC6MPjRDKOnmi2draNu74hd0oDdz-8_Nv46hhu28tjTvfNfA2u869nahrHDobXX7HKzYp88mdEH5-PYebYdd-QN7tC0w_SHNprfUN_6Kfl3wJbshL9KXjTYBXr9-J4mX1Znn5cf04vN-Xq5uEiNLCSkTSEUQlYbBGXmRVXpvJFkCl0B1gZUhlBHobM517zOpJBYqMaoGkkDZpU8Td4ffHfefRspDGXfBkNdh5bcGEqhdFYIyEFG9N0_6K0bvY3XlUIDzIXiIo_U7EAZ70Lw1JQ73_bo9yXwciqtnEorn0qLC28fbceqp_oJ_9NSBPQBuG872v_Hrlxcrc_-mv8CLJGnzg</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Huang, Chuanhui</creator><creator>Sun, Weiming</creator><creator>Jin, Yingxue</creator><creator>Guo, Quanquan</creator><creator>Mücke, David</creator><creator>Chu, Xingyuan</creator><creator>Liao, Zhongquan</creator><creator>Chandrasekhar, Naisa</creator><creator>Huang, Xing</creator><creator>Lu, Yang</creator><creator>Chen, Guangbo</creator><creator>Wang, Mingchao</creator><creator>Liu, Jinxin</creator><creator>Zhang, Geping</creator><creator>Yu, Minghao</creator><creator>Qi, Haoyuan</creator><creator>Kaiser, Ute</creator><creator>Xu, Gang</creator><creator>Feng, Xinliang</creator><creator>Dong, Renhao</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4125-9284</orcidid></search><sort><creationdate>20240115</creationdate><title>A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors</title><author>Huang, Chuanhui ; Sun, Weiming ; Jin, Yingxue ; Guo, Quanquan ; Mücke, David ; Chu, Xingyuan ; Liao, Zhongquan ; Chandrasekhar, Naisa ; Huang, Xing ; Lu, Yang ; Chen, Guangbo ; Wang, Mingchao ; Liu, Jinxin ; Zhang, Geping ; Yu, Minghao ; Qi, Haoyuan ; Kaiser, Ute ; Xu, Gang ; Feng, Xinliang ; Dong, Renhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-f728a14dca18c67bb95f3ec79b1adc184a1dadc946090d4323a78fc8dae91a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemiresistive Sensor</topic><topic>Conductive 2D MOFs</topic><topic>Coordination polymers</topic><topic>Copper</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electronic equipment</topic><topic>Electronic properties</topic><topic>Gas sensors</topic><topic>Hierarchical Nanostructure</topic><topic>Insulation</topic><topic>Mass transport</topic><topic>Metal-organic frameworks</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Polymers</topic><topic>Specific capacity</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>Template Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chuanhui</creatorcontrib><creatorcontrib>Sun, Weiming</creatorcontrib><creatorcontrib>Jin, Yingxue</creatorcontrib><creatorcontrib>Guo, Quanquan</creatorcontrib><creatorcontrib>Mücke, David</creatorcontrib><creatorcontrib>Chu, Xingyuan</creatorcontrib><creatorcontrib>Liao, Zhongquan</creatorcontrib><creatorcontrib>Chandrasekhar, Naisa</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Chen, Guangbo</creatorcontrib><creatorcontrib>Wang, Mingchao</creatorcontrib><creatorcontrib>Liu, Jinxin</creatorcontrib><creatorcontrib>Zhang, Geping</creatorcontrib><creatorcontrib>Yu, Minghao</creatorcontrib><creatorcontrib>Qi, Haoyuan</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chuanhui</au><au>Sun, Weiming</au><au>Jin, Yingxue</au><au>Guo, Quanquan</au><au>Mücke, David</au><au>Chu, Xingyuan</au><au>Liao, Zhongquan</au><au>Chandrasekhar, Naisa</au><au>Huang, Xing</au><au>Lu, Yang</au><au>Chen, Guangbo</au><au>Wang, Mingchao</au><au>Liu, Jinxin</au><au>Zhang, Geping</au><au>Yu, Minghao</au><au>Qi, Haoyuan</au><au>Kaiser, Ute</au><au>Xu, Gang</au><au>Feng, Xinliang</au><au>Dong, Renhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-01-15</date><risdate>2024</risdate><volume>63</volume><issue>3</issue><spage>e202313591</spage><epage>n/a</epage><pages>e202313591-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Two‐dimensional conjugated metal–organic frameworks (2D c‐MOFs) are emerging as a unique subclass of layer‐stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c‐MOFs, the controlled synthesis of hierarchically nanostructured 2D c‐MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c‐MOFs with controlled morphologies and dimensions via insulating MOFs‐to‐c‐MOFs transformations. The resultant hierarchically nanostructured 2D c‐MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk‐type 2D c‐MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof‐of‐concept applications, the hierarchically nanostructured 2D c‐MOFs exhibit a superior performance for electrical properties related applications (hollow Cu‐BHT nanocubes‐based supercapacitor and Cu‐HHB nanoflowers‐based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c‐MOFs, respectively.
A template strategy has been developed for the general synthesis of hierarchically nanostructured 2D conjugated metal–organic frameworks (2D c‐MOFs) with high crystallinity, tailored morphologies, and high porosity via insulating MOFs‐to‐c‐MOFs transformations. These nanostructured 2D c‐MOFs show great potential in supercapacitors and chemiresistive H2S sensors.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38011010</pmid><doi>10.1002/anie.202313591</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4125-9284</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-01, Vol.63 (3), p.e202313591-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2894721513 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemiresistive Sensor Conductive 2D MOFs Coordination polymers Copper Electrical conductivity Electrical properties Electrical resistivity Electronic equipment Electronic properties Gas sensors Hierarchical Nanostructure Insulation Mass transport Metal-organic frameworks Morphology Nanostructure Polymers Specific capacity Supercapacitor Supercapacitors Synthesis Template Strategy |
title | A General Synthesis of Nanostructured Conductive Metal–Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Synthesis%20of%20Nanostructured%20Conductive%20Metal%E2%80%93Organic%20Frameworks%20from%20Insulating%20MOF%20Precursors%20for%20Supercapacitors%20and%20Chemiresistive%20Sensors&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Huang,%20Chuanhui&rft.date=2024-01-15&rft.volume=63&rft.issue=3&rft.spage=e202313591&rft.epage=n/a&rft.pages=e202313591-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202313591&rft_dat=%3Cproquest_cross%3E2911628025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911628025&rft_id=info:pmid/38011010&rfr_iscdi=true |