Polyelectrolyte Complex Hydrogels from Controlled Kneading and Annealing‐Induced Tightly Wound and Highly Entangled Natural Polysaccharides
Hydrogels usually are fabricated by using monomers or preexisting polymers in precursor solutions. Here, a polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) made from a precursor dough, by kneading, annealing, and crosslinking the dough of two oppositely charged polysaccharides, cationic chitos...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2024-03, Vol.13 (8), p.e2302973-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e2302973 |
container_title | Advanced healthcare materials |
container_volume | 13 |
creator | Chen, Shunlan Li, Dapeng Wen, Ying Peng, Gege Ye, Kexin Huang, Yiwan Long, Shijun Li, Xuefeng |
description | Hydrogels usually are fabricated by using monomers or preexisting polymers in precursor solutions. Here, a polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) made from a precursor dough, by kneading, annealing, and crosslinking the dough of two oppositely charged polysaccharides, cationic chitosan quaternary ammonium salt (HACC) and anionic sodium hyaluronate (HA), photoinitiator (α‐ketoglutaric acid), crosslinker glycidyl methacrylate (GMA), and water of very small quantity is reported. Controlled kneading and annealing homogenized the dough with respect to transforming randomly distributed, individual polymer chains into tightly wound double‐stranded structures, which, upon UV irradiation, covalently sparsely crosslinked into a highly entangled network and subsequently, upon fully swollen in water, results in Bio‐PEC hydrogel, HACC/HA, exhibiting near‐perfect elasticity, high tensile strength, and high swelling resistance. Via the same kneading and annealing, tetracarboxyphenylporphyrin iron (Fe‐TCPP) metal nanoclusters are incorporated into HACC/HA to obtain photocatalytic, antibacterial, and biocompatible Bio‐PEC hydrogel composite, Fe‐TCPP@HACC/HA. Using SD rat models, the efficacy of Fe‐TCPP@HACC/HA in inhibiting Escherichia coli (E. coli) growth in vitro and the ability to promote wound healing and scar‐free skin regeneration in vivo, or its high potential as a wound dressing material for biomedical applications are demonstrated.
This work demonstrates an approach to high tensile strength, toughness, and high swelling resistance polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) via the controlled kneading and annealing homogenized formation of tightly wound double‐stranded structures and sparsely covalently crosslinked into a highly entangled network. Tetracarboxyphenylporphyrin iron (Fe‐TCPP) is incorporated into Bio‐PEC hydrogel, showing favourable antibacterial activity and promoting wound healing and skin regeneration. |
doi_str_mv | 10.1002/adhm.202302973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2894721243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894721243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3283-28bea383650f2479754a73262c37ba5583c003a091d17b468db977fd9c89e5da3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi1ERavSK0cUiQuXXfwnie3jaindilI4FHG0HHuym8qxFzsRzY0XQOIZeRIcbVkkLszFM59-83mkD6EXBC8JxvSNtrt-STFlmErOnqAzSiRd0LqST499iU_RRUr3OFddkVqQZ-iUCUwIK-UZ-vEpuAkcmCHmZoBiHfq9g4diM9kYtuBS0cbQZ9nPhANbvPegbee3hfa2WPk8uTz9-v7z2tvRZOCu2-4GNxVfwpiJmdpkJQuXftB-O3vc6mGM2hXz70kbs9Oxs5Ceo5NWuwQXj-85-vzu8m69Wdx8vLper24WhlHBFlQ0oJlgdYVbWnLJq1JzRmtqGG90VQlmMGYaS2IJb8pa2EZy3lpphITKanaOXh989zF8HSENqu-SAee0hzAmRYUsOSW0ZBl99Q96H8bo83WKSpEvKBmWmVoeKBNDShFatY9dr-OkCFZzVmrOSh2zygsvH23Hpgd7xP8kkwF5AL51Dqb_2KnV282Hv-a_Aa7Sojo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2986504309</pqid></control><display><type>article</type><title>Polyelectrolyte Complex Hydrogels from Controlled Kneading and Annealing‐Induced Tightly Wound and Highly Entangled Natural Polysaccharides</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Shunlan ; Li, Dapeng ; Wen, Ying ; Peng, Gege ; Ye, Kexin ; Huang, Yiwan ; Long, Shijun ; Li, Xuefeng</creator><creatorcontrib>Chen, Shunlan ; Li, Dapeng ; Wen, Ying ; Peng, Gege ; Ye, Kexin ; Huang, Yiwan ; Long, Shijun ; Li, Xuefeng</creatorcontrib><description>Hydrogels usually are fabricated by using monomers or preexisting polymers in precursor solutions. Here, a polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) made from a precursor dough, by kneading, annealing, and crosslinking the dough of two oppositely charged polysaccharides, cationic chitosan quaternary ammonium salt (HACC) and anionic sodium hyaluronate (HA), photoinitiator (α‐ketoglutaric acid), crosslinker glycidyl methacrylate (GMA), and water of very small quantity is reported. Controlled kneading and annealing homogenized the dough with respect to transforming randomly distributed, individual polymer chains into tightly wound double‐stranded structures, which, upon UV irradiation, covalently sparsely crosslinked into a highly entangled network and subsequently, upon fully swollen in water, results in Bio‐PEC hydrogel, HACC/HA, exhibiting near‐perfect elasticity, high tensile strength, and high swelling resistance. Via the same kneading and annealing, tetracarboxyphenylporphyrin iron (Fe‐TCPP) metal nanoclusters are incorporated into HACC/HA to obtain photocatalytic, antibacterial, and biocompatible Bio‐PEC hydrogel composite, Fe‐TCPP@HACC/HA. Using SD rat models, the efficacy of Fe‐TCPP@HACC/HA in inhibiting Escherichia coli (E. coli) growth in vitro and the ability to promote wound healing and scar‐free skin regeneration in vivo, or its high potential as a wound dressing material for biomedical applications are demonstrated.
This work demonstrates an approach to high tensile strength, toughness, and high swelling resistance polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) via the controlled kneading and annealing homogenized formation of tightly wound double‐stranded structures and sparsely covalently crosslinked into a highly entangled network. Tetracarboxyphenylporphyrin iron (Fe‐TCPP) is incorporated into Bio‐PEC hydrogel, showing favourable antibacterial activity and promoting wound healing and skin regeneration.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202302973</identifier><identifier>PMID: 38011349</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animal models ; Animals ; Annealing ; Anti-Bacterial Agents - chemistry ; Biocompatibility ; Biocompatible Materials - chemistry ; Biomedical materials ; Chitosan ; Chitosan - chemistry ; Crosslinking ; double‐network ; Dough ; E coli ; Escherichia coli ; highly entangled network ; Hydrogels ; Hydrogels - chemistry ; Iron ; Ketoglutaric acid ; Metalloporphyrins ; Nanoclusters ; Photoinitiators ; polyelectrolyte complex ; Polyelectrolytes ; Polyelectrolytes - chemistry ; Polymers ; Polysaccharides ; Prepolymers ; Quaternary ammonium salts ; Rats ; Rats, Sprague-Dawley ; Sodium hyaluronate ; Tensile strength ; tightly wound polymer chainst ; Ultraviolet radiation ; Water ; Wound healing</subject><ispartof>Advanced healthcare materials, 2024-03, Vol.13 (8), p.e2302973-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3283-28bea383650f2479754a73262c37ba5583c003a091d17b468db977fd9c89e5da3</cites><orcidid>0000-0001-5082-1008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202302973$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202302973$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38011349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Shunlan</creatorcontrib><creatorcontrib>Li, Dapeng</creatorcontrib><creatorcontrib>Wen, Ying</creatorcontrib><creatorcontrib>Peng, Gege</creatorcontrib><creatorcontrib>Ye, Kexin</creatorcontrib><creatorcontrib>Huang, Yiwan</creatorcontrib><creatorcontrib>Long, Shijun</creatorcontrib><creatorcontrib>Li, Xuefeng</creatorcontrib><title>Polyelectrolyte Complex Hydrogels from Controlled Kneading and Annealing‐Induced Tightly Wound and Highly Entangled Natural Polysaccharides</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Hydrogels usually are fabricated by using monomers or preexisting polymers in precursor solutions. Here, a polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) made from a precursor dough, by kneading, annealing, and crosslinking the dough of two oppositely charged polysaccharides, cationic chitosan quaternary ammonium salt (HACC) and anionic sodium hyaluronate (HA), photoinitiator (α‐ketoglutaric acid), crosslinker glycidyl methacrylate (GMA), and water of very small quantity is reported. Controlled kneading and annealing homogenized the dough with respect to transforming randomly distributed, individual polymer chains into tightly wound double‐stranded structures, which, upon UV irradiation, covalently sparsely crosslinked into a highly entangled network and subsequently, upon fully swollen in water, results in Bio‐PEC hydrogel, HACC/HA, exhibiting near‐perfect elasticity, high tensile strength, and high swelling resistance. Via the same kneading and annealing, tetracarboxyphenylporphyrin iron (Fe‐TCPP) metal nanoclusters are incorporated into HACC/HA to obtain photocatalytic, antibacterial, and biocompatible Bio‐PEC hydrogel composite, Fe‐TCPP@HACC/HA. Using SD rat models, the efficacy of Fe‐TCPP@HACC/HA in inhibiting Escherichia coli (E. coli) growth in vitro and the ability to promote wound healing and scar‐free skin regeneration in vivo, or its high potential as a wound dressing material for biomedical applications are demonstrated.
This work demonstrates an approach to high tensile strength, toughness, and high swelling resistance polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) via the controlled kneading and annealing homogenized formation of tightly wound double‐stranded structures and sparsely covalently crosslinked into a highly entangled network. Tetracarboxyphenylporphyrin iron (Fe‐TCPP) is incorporated into Bio‐PEC hydrogel, showing favourable antibacterial activity and promoting wound healing and skin regeneration.</description><subject>Animal models</subject><subject>Animals</subject><subject>Annealing</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical materials</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Crosslinking</subject><subject>double‐network</subject><subject>Dough</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>highly entangled network</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Iron</subject><subject>Ketoglutaric acid</subject><subject>Metalloporphyrins</subject><subject>Nanoclusters</subject><subject>Photoinitiators</subject><subject>polyelectrolyte complex</subject><subject>Polyelectrolytes</subject><subject>Polyelectrolytes - chemistry</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Prepolymers</subject><subject>Quaternary ammonium salts</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sodium hyaluronate</subject><subject>Tensile strength</subject><subject>tightly wound polymer chainst</subject><subject>Ultraviolet radiation</subject><subject>Water</subject><subject>Wound healing</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi1ERavSK0cUiQuXXfwnie3jaindilI4FHG0HHuym8qxFzsRzY0XQOIZeRIcbVkkLszFM59-83mkD6EXBC8JxvSNtrt-STFlmErOnqAzSiRd0LqST499iU_RRUr3OFddkVqQZ-iUCUwIK-UZ-vEpuAkcmCHmZoBiHfq9g4diM9kYtuBS0cbQZ9nPhANbvPegbee3hfa2WPk8uTz9-v7z2tvRZOCu2-4GNxVfwpiJmdpkJQuXftB-O3vc6mGM2hXz70kbs9Oxs5Ceo5NWuwQXj-85-vzu8m69Wdx8vLper24WhlHBFlQ0oJlgdYVbWnLJq1JzRmtqGG90VQlmMGYaS2IJb8pa2EZy3lpphITKanaOXh989zF8HSENqu-SAee0hzAmRYUsOSW0ZBl99Q96H8bo83WKSpEvKBmWmVoeKBNDShFatY9dr-OkCFZzVmrOSh2zygsvH23Hpgd7xP8kkwF5AL51Dqb_2KnV282Hv-a_Aa7Sojo</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Chen, Shunlan</creator><creator>Li, Dapeng</creator><creator>Wen, Ying</creator><creator>Peng, Gege</creator><creator>Ye, Kexin</creator><creator>Huang, Yiwan</creator><creator>Long, Shijun</creator><creator>Li, Xuefeng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5082-1008</orcidid></search><sort><creationdate>20240301</creationdate><title>Polyelectrolyte Complex Hydrogels from Controlled Kneading and Annealing‐Induced Tightly Wound and Highly Entangled Natural Polysaccharides</title><author>Chen, Shunlan ; Li, Dapeng ; Wen, Ying ; Peng, Gege ; Ye, Kexin ; Huang, Yiwan ; Long, Shijun ; Li, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3283-28bea383650f2479754a73262c37ba5583c003a091d17b468db977fd9c89e5da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Annealing</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical materials</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Crosslinking</topic><topic>double‐network</topic><topic>Dough</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>highly entangled network</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Iron</topic><topic>Ketoglutaric acid</topic><topic>Metalloporphyrins</topic><topic>Nanoclusters</topic><topic>Photoinitiators</topic><topic>polyelectrolyte complex</topic><topic>Polyelectrolytes</topic><topic>Polyelectrolytes - chemistry</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Prepolymers</topic><topic>Quaternary ammonium salts</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sodium hyaluronate</topic><topic>Tensile strength</topic><topic>tightly wound polymer chainst</topic><topic>Ultraviolet radiation</topic><topic>Water</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shunlan</creatorcontrib><creatorcontrib>Li, Dapeng</creatorcontrib><creatorcontrib>Wen, Ying</creatorcontrib><creatorcontrib>Peng, Gege</creatorcontrib><creatorcontrib>Ye, Kexin</creatorcontrib><creatorcontrib>Huang, Yiwan</creatorcontrib><creatorcontrib>Long, Shijun</creatorcontrib><creatorcontrib>Li, Xuefeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shunlan</au><au>Li, Dapeng</au><au>Wen, Ying</au><au>Peng, Gege</au><au>Ye, Kexin</au><au>Huang, Yiwan</au><au>Long, Shijun</au><au>Li, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyelectrolyte Complex Hydrogels from Controlled Kneading and Annealing‐Induced Tightly Wound and Highly Entangled Natural Polysaccharides</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>13</volume><issue>8</issue><spage>e2302973</spage><epage>n/a</epage><pages>e2302973-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Hydrogels usually are fabricated by using monomers or preexisting polymers in precursor solutions. Here, a polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) made from a precursor dough, by kneading, annealing, and crosslinking the dough of two oppositely charged polysaccharides, cationic chitosan quaternary ammonium salt (HACC) and anionic sodium hyaluronate (HA), photoinitiator (α‐ketoglutaric acid), crosslinker glycidyl methacrylate (GMA), and water of very small quantity is reported. Controlled kneading and annealing homogenized the dough with respect to transforming randomly distributed, individual polymer chains into tightly wound double‐stranded structures, which, upon UV irradiation, covalently sparsely crosslinked into a highly entangled network and subsequently, upon fully swollen in water, results in Bio‐PEC hydrogel, HACC/HA, exhibiting near‐perfect elasticity, high tensile strength, and high swelling resistance. Via the same kneading and annealing, tetracarboxyphenylporphyrin iron (Fe‐TCPP) metal nanoclusters are incorporated into HACC/HA to obtain photocatalytic, antibacterial, and biocompatible Bio‐PEC hydrogel composite, Fe‐TCPP@HACC/HA. Using SD rat models, the efficacy of Fe‐TCPP@HACC/HA in inhibiting Escherichia coli (E. coli) growth in vitro and the ability to promote wound healing and scar‐free skin regeneration in vivo, or its high potential as a wound dressing material for biomedical applications are demonstrated.
This work demonstrates an approach to high tensile strength, toughness, and high swelling resistance polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) via the controlled kneading and annealing homogenized formation of tightly wound double‐stranded structures and sparsely covalently crosslinked into a highly entangled network. Tetracarboxyphenylporphyrin iron (Fe‐TCPP) is incorporated into Bio‐PEC hydrogel, showing favourable antibacterial activity and promoting wound healing and skin regeneration.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38011349</pmid><doi>10.1002/adhm.202302973</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5082-1008</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2024-03, Vol.13 (8), p.e2302973-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2894721243 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal models Animals Annealing Anti-Bacterial Agents - chemistry Biocompatibility Biocompatible Materials - chemistry Biomedical materials Chitosan Chitosan - chemistry Crosslinking double‐network Dough E coli Escherichia coli highly entangled network Hydrogels Hydrogels - chemistry Iron Ketoglutaric acid Metalloporphyrins Nanoclusters Photoinitiators polyelectrolyte complex Polyelectrolytes Polyelectrolytes - chemistry Polymers Polysaccharides Prepolymers Quaternary ammonium salts Rats Rats, Sprague-Dawley Sodium hyaluronate Tensile strength tightly wound polymer chainst Ultraviolet radiation Water Wound healing |
title | Polyelectrolyte Complex Hydrogels from Controlled Kneading and Annealing‐Induced Tightly Wound and Highly Entangled Natural Polysaccharides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyelectrolyte%20Complex%20Hydrogels%20from%20Controlled%20Kneading%20and%20Annealing%E2%80%90Induced%20Tightly%20Wound%20and%20Highly%20Entangled%20Natural%20Polysaccharides&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Chen,%20Shunlan&rft.date=2024-03-01&rft.volume=13&rft.issue=8&rft.spage=e2302973&rft.epage=n/a&rft.pages=e2302973-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202302973&rft_dat=%3Cproquest_cross%3E2894721243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2986504309&rft_id=info:pmid/38011349&rfr_iscdi=true |