Modeling studies of the sulfur cycle in low-level, warm stratiform clouds

A one-dimensional cloud model with size-resolved microphysics has been fully coupled with size-resolved aqueous-phase chemistry. The model, driven by prescribed dynamics, has been used to study the sulfur cycle in low-level, warm stratiform clouds. Model evaluation and sensitivity tests show that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric research 2006-01, Vol.80 (2), p.187-217
Hauptverfasser: Zhang, Leiming, Michelangeli, Diane V., Djouad, Rafik, Taylor, Peter A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 2
container_start_page 187
container_title Atmospheric research
container_volume 80
creator Zhang, Leiming
Michelangeli, Diane V.
Djouad, Rafik
Taylor, Peter A.
description A one-dimensional cloud model with size-resolved microphysics has been fully coupled with size-resolved aqueous-phase chemistry. The model, driven by prescribed dynamics, has been used to study the sulfur cycle in low-level, warm stratiform clouds. Model evaluation and sensitivity tests show that the model can reasonably simulate the time-evolution of cloud properties, interstitial aerosols, gas to aqueous conversions and size-resolved cloud water acidity. Model results show that gaseous NH 3 and H 2O 2 can be removed quickly by the aqueous-phase process within the cloud layer due to the very small size of cloud droplets. 10% to 50% of SO 2 within the cloud layer can be scavenged in a 1-h period depending on the concentrations of other gaseous species, especially those of NH 3 and H 2O 2. Aqueous-phase chemistry can effectively transfer mass from gas to aqueous particles in low-level, warm stratiform clouds. The rate of transfer from gaseous SO 2 to aqueous sulfate depends on the cloud properties, which are controlled by the initial cloud condensation nuclei (CCN) from which the cloud forms, and on gaseous concentrations of other species such as NH 3 and H 2O 2. Aqueous-phase chemistry might broaden the cloud droplet spectra by increasing the number concentrations of both smallest and largest droplets, and thus enhance precipitation formation.
doi_str_mv 10.1016/j.atmosres.2005.08.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28942963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169809505002073</els_id><sourcerecordid>17164463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-e70a2aa73a9c093dbcfd34706ac41f4405104d4e2b96c9d6a69d6b26982ab6433</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EEuXxCygbWJEwThwn3oEQj0pFbGBtufYEXLkx2AlV_x5Di1jCZmYW585o7iXkhEJBgfKLRaGGpY8BY1EC1AW0BQDdIRPaNlVetqLeJZMEirwFUe-TgxgXkEBgYkKmD96gs_1LFofRWIyZ77LhFbM4um4MmV5rh5ntM-dXucMPdOfZSoVlwoMabOfTqJ0fTTwie51yEY-3_ZA83948Xd_ns8e76fXVLNesqoccG1ClUk2lhAZRmbnuTMUa4Eoz2jEGNQVmGJZzwbUwXPFU5iUXbanmnFXVITnb7H0L_n3EOMiljRqdUz36Mcr0MCsF_w-YPOCc_wnShnLGvjfyDaiDj8nwTr4Fu1RhLSnIryzkQv5kIb-ykNDKlEUSnm4vqKiV64LqtY2_6qYBxgESd7nhMBn4YTHIqC32Go0NqAdpvP3r1Ce-cKLG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17164463</pqid></control><display><type>article</type><title>Modeling studies of the sulfur cycle in low-level, warm stratiform clouds</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Leiming ; Michelangeli, Diane V. ; Djouad, Rafik ; Taylor, Peter A.</creator><creatorcontrib>Zhang, Leiming ; Michelangeli, Diane V. ; Djouad, Rafik ; Taylor, Peter A.</creatorcontrib><description>A one-dimensional cloud model with size-resolved microphysics has been fully coupled with size-resolved aqueous-phase chemistry. The model, driven by prescribed dynamics, has been used to study the sulfur cycle in low-level, warm stratiform clouds. Model evaluation and sensitivity tests show that the model can reasonably simulate the time-evolution of cloud properties, interstitial aerosols, gas to aqueous conversions and size-resolved cloud water acidity. Model results show that gaseous NH 3 and H 2O 2 can be removed quickly by the aqueous-phase process within the cloud layer due to the very small size of cloud droplets. 10% to 50% of SO 2 within the cloud layer can be scavenged in a 1-h period depending on the concentrations of other gaseous species, especially those of NH 3 and H 2O 2. Aqueous-phase chemistry can effectively transfer mass from gas to aqueous particles in low-level, warm stratiform clouds. The rate of transfer from gaseous SO 2 to aqueous sulfate depends on the cloud properties, which are controlled by the initial cloud condensation nuclei (CCN) from which the cloud forms, and on gaseous concentrations of other species such as NH 3 and H 2O 2. Aqueous-phase chemistry might broaden the cloud droplet spectra by increasing the number concentrations of both smallest and largest droplets, and thus enhance precipitation formation.</description><identifier>ISSN: 0169-8095</identifier><identifier>EISSN: 1873-2895</identifier><identifier>DOI: 10.1016/j.atmosres.2005.08.001</identifier><identifier>CODEN: ATREEW</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aqueous-phase chemistry ; Chemical composition and interactions. Ionic interactions and processes ; Cloud model ; Cloud physics ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; Stratiform cloud ; Sulfur cycle</subject><ispartof>Atmospheric research, 2006-01, Vol.80 (2), p.187-217</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-e70a2aa73a9c093dbcfd34706ac41f4405104d4e2b96c9d6a69d6b26982ab6433</citedby><cites>FETCH-LOGICAL-c435t-e70a2aa73a9c093dbcfd34706ac41f4405104d4e2b96c9d6a69d6b26982ab6433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169809505002073$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17704600$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Leiming</creatorcontrib><creatorcontrib>Michelangeli, Diane V.</creatorcontrib><creatorcontrib>Djouad, Rafik</creatorcontrib><creatorcontrib>Taylor, Peter A.</creatorcontrib><title>Modeling studies of the sulfur cycle in low-level, warm stratiform clouds</title><title>Atmospheric research</title><description>A one-dimensional cloud model with size-resolved microphysics has been fully coupled with size-resolved aqueous-phase chemistry. The model, driven by prescribed dynamics, has been used to study the sulfur cycle in low-level, warm stratiform clouds. Model evaluation and sensitivity tests show that the model can reasonably simulate the time-evolution of cloud properties, interstitial aerosols, gas to aqueous conversions and size-resolved cloud water acidity. Model results show that gaseous NH 3 and H 2O 2 can be removed quickly by the aqueous-phase process within the cloud layer due to the very small size of cloud droplets. 10% to 50% of SO 2 within the cloud layer can be scavenged in a 1-h period depending on the concentrations of other gaseous species, especially those of NH 3 and H 2O 2. Aqueous-phase chemistry can effectively transfer mass from gas to aqueous particles in low-level, warm stratiform clouds. The rate of transfer from gaseous SO 2 to aqueous sulfate depends on the cloud properties, which are controlled by the initial cloud condensation nuclei (CCN) from which the cloud forms, and on gaseous concentrations of other species such as NH 3 and H 2O 2. Aqueous-phase chemistry might broaden the cloud droplet spectra by increasing the number concentrations of both smallest and largest droplets, and thus enhance precipitation formation.</description><subject>Aqueous-phase chemistry</subject><subject>Chemical composition and interactions. Ionic interactions and processes</subject><subject>Cloud model</subject><subject>Cloud physics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Stratiform cloud</subject><subject>Sulfur cycle</subject><issn>0169-8095</issn><issn>1873-2895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkctOwzAQRS0EEuXxCygbWJEwThwn3oEQj0pFbGBtufYEXLkx2AlV_x5Di1jCZmYW585o7iXkhEJBgfKLRaGGpY8BY1EC1AW0BQDdIRPaNlVetqLeJZMEirwFUe-TgxgXkEBgYkKmD96gs_1LFofRWIyZ77LhFbM4um4MmV5rh5ntM-dXucMPdOfZSoVlwoMabOfTqJ0fTTwie51yEY-3_ZA83948Xd_ns8e76fXVLNesqoccG1ClUk2lhAZRmbnuTMUa4Eoz2jEGNQVmGJZzwbUwXPFU5iUXbanmnFXVITnb7H0L_n3EOMiljRqdUz36Mcr0MCsF_w-YPOCc_wnShnLGvjfyDaiDj8nwTr4Fu1RhLSnIryzkQv5kIb-ykNDKlEUSnm4vqKiV64LqtY2_6qYBxgESd7nhMBn4YTHIqC32Go0NqAdpvP3r1Ce-cKLG</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Zhang, Leiming</creator><creator>Michelangeli, Diane V.</creator><creator>Djouad, Rafik</creator><creator>Taylor, Peter A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20060101</creationdate><title>Modeling studies of the sulfur cycle in low-level, warm stratiform clouds</title><author>Zhang, Leiming ; Michelangeli, Diane V. ; Djouad, Rafik ; Taylor, Peter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-e70a2aa73a9c093dbcfd34706ac41f4405104d4e2b96c9d6a69d6b26982ab6433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aqueous-phase chemistry</topic><topic>Chemical composition and interactions. Ionic interactions and processes</topic><topic>Cloud model</topic><topic>Cloud physics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Stratiform cloud</topic><topic>Sulfur cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Leiming</creatorcontrib><creatorcontrib>Michelangeli, Diane V.</creatorcontrib><creatorcontrib>Djouad, Rafik</creatorcontrib><creatorcontrib>Taylor, Peter A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Atmospheric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Leiming</au><au>Michelangeli, Diane V.</au><au>Djouad, Rafik</au><au>Taylor, Peter A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling studies of the sulfur cycle in low-level, warm stratiform clouds</atitle><jtitle>Atmospheric research</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>80</volume><issue>2</issue><spage>187</spage><epage>217</epage><pages>187-217</pages><issn>0169-8095</issn><eissn>1873-2895</eissn><coden>ATREEW</coden><abstract>A one-dimensional cloud model with size-resolved microphysics has been fully coupled with size-resolved aqueous-phase chemistry. The model, driven by prescribed dynamics, has been used to study the sulfur cycle in low-level, warm stratiform clouds. Model evaluation and sensitivity tests show that the model can reasonably simulate the time-evolution of cloud properties, interstitial aerosols, gas to aqueous conversions and size-resolved cloud water acidity. Model results show that gaseous NH 3 and H 2O 2 can be removed quickly by the aqueous-phase process within the cloud layer due to the very small size of cloud droplets. 10% to 50% of SO 2 within the cloud layer can be scavenged in a 1-h period depending on the concentrations of other gaseous species, especially those of NH 3 and H 2O 2. Aqueous-phase chemistry can effectively transfer mass from gas to aqueous particles in low-level, warm stratiform clouds. The rate of transfer from gaseous SO 2 to aqueous sulfate depends on the cloud properties, which are controlled by the initial cloud condensation nuclei (CCN) from which the cloud forms, and on gaseous concentrations of other species such as NH 3 and H 2O 2. Aqueous-phase chemistry might broaden the cloud droplet spectra by increasing the number concentrations of both smallest and largest droplets, and thus enhance precipitation formation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.atmosres.2005.08.001</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-8095
ispartof Atmospheric research, 2006-01, Vol.80 (2), p.187-217
issn 0169-8095
1873-2895
language eng
recordid cdi_proquest_miscellaneous_28942963
source Elsevier ScienceDirect Journals
subjects Aqueous-phase chemistry
Chemical composition and interactions. Ionic interactions and processes
Cloud model
Cloud physics
Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
Stratiform cloud
Sulfur cycle
title Modeling studies of the sulfur cycle in low-level, warm stratiform clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20studies%20of%20the%20sulfur%20cycle%20in%20low-level,%20warm%20stratiform%20clouds&rft.jtitle=Atmospheric%20research&rft.au=Zhang,%20Leiming&rft.date=2006-01-01&rft.volume=80&rft.issue=2&rft.spage=187&rft.epage=217&rft.pages=187-217&rft.issn=0169-8095&rft.eissn=1873-2895&rft.coden=ATREEW&rft_id=info:doi/10.1016/j.atmosres.2005.08.001&rft_dat=%3Cproquest_cross%3E17164463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17164463&rft_id=info:pmid/&rft_els_id=S0169809505002073&rfr_iscdi=true