Validity of Diagnostic Support Model for Attention Deficit Hyperactivity Disorder: A Machine Learning Approach

An accurate and early diagnosis of attention deficit hyperactivity disorder can improve health outcomes and prevent unnecessary medical expenses. This study developed a diagnostic support model using a machine learning approach to effectively screen individuals for attention deficit hyperactivity di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of personalized medicine 2023-11, Vol.13 (11), p.1525
Hauptverfasser: Chu, Kuo-Chung, Huang, Hsin-Jou, Huang, Yu-Shu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1525
container_title Journal of personalized medicine
container_volume 13
creator Chu, Kuo-Chung
Huang, Hsin-Jou
Huang, Yu-Shu
description An accurate and early diagnosis of attention deficit hyperactivity disorder can improve health outcomes and prevent unnecessary medical expenses. This study developed a diagnostic support model using a machine learning approach to effectively screen individuals for attention deficit hyperactivity disorder. Three models were developed: a logistic regression model, a classification and regression tree (CART), and a neural network. The models were assessed by using a receiver operating characteristic analysis. In total, 74 participants were enrolled into the disorder group, while 21 participants were enrolled in the control group. The sensitivity and specificity of each model, indicating the rate of true positive and true negative results, respectively, were assessed. The CART model demonstrated a superior performance compared to the other two models, with region values of receiver operating characteristic analyses in the following order: CART (0.848) > logistic regression model (0.826) > neural network (0.67). The sensitivity and specificity of the CART model were 78.8% and 50%, respectively. This model can be applied to other neuroscience research fields, including the diagnoses of autism spectrum disorder, Tourette syndrome, and dementia. This will enhance the effect and practical value of our research.
doi_str_mv 10.3390/jpm13111525
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2893842880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774322405</galeid><sourcerecordid>A774322405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-48086aca189430b6b8c049463e16430da62ffcbca48dba43af04a14df74075743</originalsourceid><addsrcrecordid>eNptkU1LAzEQhhdRsNSe_AMBL4JszdfuZr0trVqhxYMf1yXNJjVlN1mTVOi_N7WCVcwcEl6edyYzkyTnCI4JKeH1uu8QQQhlODtKBhgWWUopzo8P3qfJyPs1jIdlGOdwkJhX3upGhy2wCkw1XxnrgxbgadP31gWwsI1sgbIOVCFIE7Q1YCqVFjqA2baXjougP3b-qfbWNdLdgAosuHjTRoK55M5oswJV3zsbxbPkRPHWy9H3PUxe7m6fJ7N0_nj_MKnmqSAlCyllkOVccMRKSuAyXzIBaUlzIlEehYbnWCmxFJyyZskp4QpSjmijChpbLSgZJpf7vLHs-0b6UHfaC9m23Ei78TVmJWEUMwYjevEHXduNM_F3XxQmEBboh1rxVtbaKBti67ukdVXEghhTmEVq_A8Vo5GdFtbEwUX9l-FqbxDOeu-kqnunO-62NYL1bqv1wVbJJ4m1kqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893230071</pqid></control><display><type>article</type><title>Validity of Diagnostic Support Model for Attention Deficit Hyperactivity Disorder: A Machine Learning Approach</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Chu, Kuo-Chung ; Huang, Hsin-Jou ; Huang, Yu-Shu</creator><creatorcontrib>Chu, Kuo-Chung ; Huang, Hsin-Jou ; Huang, Yu-Shu</creatorcontrib><description>An accurate and early diagnosis of attention deficit hyperactivity disorder can improve health outcomes and prevent unnecessary medical expenses. This study developed a diagnostic support model using a machine learning approach to effectively screen individuals for attention deficit hyperactivity disorder. Three models were developed: a logistic regression model, a classification and regression tree (CART), and a neural network. The models were assessed by using a receiver operating characteristic analysis. In total, 74 participants were enrolled into the disorder group, while 21 participants were enrolled in the control group. The sensitivity and specificity of each model, indicating the rate of true positive and true negative results, respectively, were assessed. The CART model demonstrated a superior performance compared to the other two models, with region values of receiver operating characteristic analyses in the following order: CART (0.848) &gt; logistic regression model (0.826) &gt; neural network (0.67). The sensitivity and specificity of the CART model were 78.8% and 50%, respectively. This model can be applied to other neuroscience research fields, including the diagnoses of autism spectrum disorder, Tourette syndrome, and dementia. This will enhance the effect and practical value of our research.</description><identifier>ISSN: 2075-4426</identifier><identifier>EISSN: 2075-4426</identifier><identifier>DOI: 10.3390/jpm13111525</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Academic achievement ; Accuracy ; Attention deficit hyperactivity disorder ; Autism ; Decision making ; Dementia disorders ; Diagnostic equipment (Medical) ; Gilles de la Tourette syndrome ; Hyperactivity ; Impulsivity ; Learning algorithms ; Machine learning ; Mediation ; Mental disorders ; Neural networks ; Neurosciences ; Performance evaluation ; Pervasive developmental disorders ; Precision medicine ; Questionnaires ; Regression analysis ; Variables</subject><ispartof>Journal of personalized medicine, 2023-11, Vol.13 (11), p.1525</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-48086aca189430b6b8c049463e16430da62ffcbca48dba43af04a14df74075743</citedby><cites>FETCH-LOGICAL-c398t-48086aca189430b6b8c049463e16430da62ffcbca48dba43af04a14df74075743</cites><orcidid>0000-0002-4015-5942 ; 0000-0001-5390-516X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Chu, Kuo-Chung</creatorcontrib><creatorcontrib>Huang, Hsin-Jou</creatorcontrib><creatorcontrib>Huang, Yu-Shu</creatorcontrib><title>Validity of Diagnostic Support Model for Attention Deficit Hyperactivity Disorder: A Machine Learning Approach</title><title>Journal of personalized medicine</title><description>An accurate and early diagnosis of attention deficit hyperactivity disorder can improve health outcomes and prevent unnecessary medical expenses. This study developed a diagnostic support model using a machine learning approach to effectively screen individuals for attention deficit hyperactivity disorder. Three models were developed: a logistic regression model, a classification and regression tree (CART), and a neural network. The models were assessed by using a receiver operating characteristic analysis. In total, 74 participants were enrolled into the disorder group, while 21 participants were enrolled in the control group. The sensitivity and specificity of each model, indicating the rate of true positive and true negative results, respectively, were assessed. The CART model demonstrated a superior performance compared to the other two models, with region values of receiver operating characteristic analyses in the following order: CART (0.848) &gt; logistic regression model (0.826) &gt; neural network (0.67). The sensitivity and specificity of the CART model were 78.8% and 50%, respectively. This model can be applied to other neuroscience research fields, including the diagnoses of autism spectrum disorder, Tourette syndrome, and dementia. This will enhance the effect and practical value of our research.</description><subject>Academic achievement</subject><subject>Accuracy</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Autism</subject><subject>Decision making</subject><subject>Dementia disorders</subject><subject>Diagnostic equipment (Medical)</subject><subject>Gilles de la Tourette syndrome</subject><subject>Hyperactivity</subject><subject>Impulsivity</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mediation</subject><subject>Mental disorders</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Performance evaluation</subject><subject>Pervasive developmental disorders</subject><subject>Precision medicine</subject><subject>Questionnaires</subject><subject>Regression analysis</subject><subject>Variables</subject><issn>2075-4426</issn><issn>2075-4426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkU1LAzEQhhdRsNSe_AMBL4JszdfuZr0trVqhxYMf1yXNJjVlN1mTVOi_N7WCVcwcEl6edyYzkyTnCI4JKeH1uu8QQQhlODtKBhgWWUopzo8P3qfJyPs1jIdlGOdwkJhX3upGhy2wCkw1XxnrgxbgadP31gWwsI1sgbIOVCFIE7Q1YCqVFjqA2baXjougP3b-qfbWNdLdgAosuHjTRoK55M5oswJV3zsbxbPkRPHWy9H3PUxe7m6fJ7N0_nj_MKnmqSAlCyllkOVccMRKSuAyXzIBaUlzIlEehYbnWCmxFJyyZskp4QpSjmijChpbLSgZJpf7vLHs-0b6UHfaC9m23Ei78TVmJWEUMwYjevEHXduNM_F3XxQmEBboh1rxVtbaKBti67ukdVXEghhTmEVq_A8Vo5GdFtbEwUX9l-FqbxDOeu-kqnunO-62NYL1bqv1wVbJJ4m1kqU</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Chu, Kuo-Chung</creator><creator>Huang, Hsin-Jou</creator><creator>Huang, Yu-Shu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4015-5942</orcidid><orcidid>https://orcid.org/0000-0001-5390-516X</orcidid></search><sort><creationdate>20231101</creationdate><title>Validity of Diagnostic Support Model for Attention Deficit Hyperactivity Disorder: A Machine Learning Approach</title><author>Chu, Kuo-Chung ; Huang, Hsin-Jou ; Huang, Yu-Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-48086aca189430b6b8c049463e16430da62ffcbca48dba43af04a14df74075743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Academic achievement</topic><topic>Accuracy</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Autism</topic><topic>Decision making</topic><topic>Dementia disorders</topic><topic>Diagnostic equipment (Medical)</topic><topic>Gilles de la Tourette syndrome</topic><topic>Hyperactivity</topic><topic>Impulsivity</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mediation</topic><topic>Mental disorders</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Performance evaluation</topic><topic>Pervasive developmental disorders</topic><topic>Precision medicine</topic><topic>Questionnaires</topic><topic>Regression analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Kuo-Chung</creatorcontrib><creatorcontrib>Huang, Hsin-Jou</creatorcontrib><creatorcontrib>Huang, Yu-Shu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of personalized medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Kuo-Chung</au><au>Huang, Hsin-Jou</au><au>Huang, Yu-Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validity of Diagnostic Support Model for Attention Deficit Hyperactivity Disorder: A Machine Learning Approach</atitle><jtitle>Journal of personalized medicine</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>11</issue><spage>1525</spage><pages>1525-</pages><issn>2075-4426</issn><eissn>2075-4426</eissn><abstract>An accurate and early diagnosis of attention deficit hyperactivity disorder can improve health outcomes and prevent unnecessary medical expenses. This study developed a diagnostic support model using a machine learning approach to effectively screen individuals for attention deficit hyperactivity disorder. Three models were developed: a logistic regression model, a classification and regression tree (CART), and a neural network. The models were assessed by using a receiver operating characteristic analysis. In total, 74 participants were enrolled into the disorder group, while 21 participants were enrolled in the control group. The sensitivity and specificity of each model, indicating the rate of true positive and true negative results, respectively, were assessed. The CART model demonstrated a superior performance compared to the other two models, with region values of receiver operating characteristic analyses in the following order: CART (0.848) &gt; logistic regression model (0.826) &gt; neural network (0.67). The sensitivity and specificity of the CART model were 78.8% and 50%, respectively. This model can be applied to other neuroscience research fields, including the diagnoses of autism spectrum disorder, Tourette syndrome, and dementia. This will enhance the effect and practical value of our research.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jpm13111525</doi><orcidid>https://orcid.org/0000-0002-4015-5942</orcidid><orcidid>https://orcid.org/0000-0001-5390-516X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4426
ispartof Journal of personalized medicine, 2023-11, Vol.13 (11), p.1525
issn 2075-4426
2075-4426
language eng
recordid cdi_proquest_miscellaneous_2893842880
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Academic achievement
Accuracy
Attention deficit hyperactivity disorder
Autism
Decision making
Dementia disorders
Diagnostic equipment (Medical)
Gilles de la Tourette syndrome
Hyperactivity
Impulsivity
Learning algorithms
Machine learning
Mediation
Mental disorders
Neural networks
Neurosciences
Performance evaluation
Pervasive developmental disorders
Precision medicine
Questionnaires
Regression analysis
Variables
title Validity of Diagnostic Support Model for Attention Deficit Hyperactivity Disorder: A Machine Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validity%20of%20Diagnostic%20Support%20Model%20for%20Attention%20Deficit%20Hyperactivity%20Disorder:%20A%20Machine%20Learning%20Approach&rft.jtitle=Journal%20of%20personalized%20medicine&rft.au=Chu,%20Kuo-Chung&rft.date=2023-11-01&rft.volume=13&rft.issue=11&rft.spage=1525&rft.pages=1525-&rft.issn=2075-4426&rft.eissn=2075-4426&rft_id=info:doi/10.3390/jpm13111525&rft_dat=%3Cgale_proqu%3EA774322405%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893230071&rft_id=info:pmid/&rft_galeid=A774322405&rfr_iscdi=true