Synthesis of Porous Materials Using Magnesium Slag and Their Adsorption Performance for Lead Ions in Aqueous Solution

Magnesium slag-based porous materials (MSBPM) were successfully synthesized using alkali activation and foaming methods as an effective adsorbent for Pb2+ in solution. The effects of foaming agent type, foaming agent dosage, alkali dosage, and water glass modulus on the properties of the MSBPM were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-11, Vol.16 (22), p.7083
Hauptverfasser: Lu, Guangjun, Han, Jingang, Chen, Ying, Xue, Hongjiao, Qiu, Ruifang, Zhou, Xinxing, Ma, Zhibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 7083
container_title Materials
container_volume 16
creator Lu, Guangjun
Han, Jingang
Chen, Ying
Xue, Hongjiao
Qiu, Ruifang
Zhou, Xinxing
Ma, Zhibin
description Magnesium slag-based porous materials (MSBPM) were successfully synthesized using alkali activation and foaming methods as an effective adsorbent for Pb2+ in solution. The effects of foaming agent type, foaming agent dosage, alkali dosage, and water glass modulus on the properties of the MSBPM were studied, and the micromorphology and porosity of the MSBPM were observed using microscopy. The influence of pH value, initial concentration, and adsorbent dosage on the Pb2+ adsorption was investigated. The results showed that a porous material (MSBPM-H2O2) with high compressive strength (8.46 MPa) and excellent Pb2+ adsorption capacity (396.11 mg·g−1) was obtained under the optimal conditions: a H2O2 dosage of 3%, an alkali dosage of 9%, a water glass modulus of 1.3, and a liquid–solid ratio of 0.5. Another porous material (MSBPM-Al) with a compressive strength of 5.27 MPa and the Pb2+ adsorption capacity of 424.89 mg·g−1 was obtained under the optimal conditions: an aluminum powder dosage of 1.5‰, an alkali dosage of 8%, a water glass modulus of 1.0, and a liquid–solid ratio of 0.5. When the pH of the aqueous solution is 6 and the initial Pb2+ concentrations are 200~500 mg·L−1, the MSBPM-H2O2 and MSBPM-Al can remove more than 99% of Pb2+ in the solution. The adsorption process of both materials followed the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process was a single-molecule layer chemical adsorption.
doi_str_mv 10.3390/ma16227083
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2893842564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774322964</galeid><sourcerecordid>A774322964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9d36a4a87370d00fc9519687b9060997c96ab22013e0758058762dd597aff1213</originalsourceid><addsrcrecordid>eNpdkclqwzAQhk1poSHNpU8g6KUUkmqxtRxN6BJIaSDJ2Si25CjYUirZh7x95aTQ0pnDLHzz88MkyT2CM0IEfG4lohgzyMlVMkJC0CkSaXr9p79NJiEcYAxCEMdilPTrk-32KpgAnAYr510fwIfslDeyCWAbjK3jXNuI9C1YN7IG0lZgs1fGg7wKzh874yxYKa-db6UtFYgNWCpZgYWzARgL8q9eDcJr1_QDfZfc6CivJj91nGxfXzbz9-ny820xz5fTklDWTUVFqEwlZ4TBCkJdigwJytlOQAqFYKWgcocxRERBlnGYcUZxVWWCSa0RRmScPF50j95FC6ErWhNK1TTSDn4KzAXhKc5oGtGHf-jB9d5Gd2cK8QhmkZpdqFo2qjBWu87LMmalWlM6q7SJ-5yxlGAszrJPl4PSuxC80sXRm1b6U4FgMXyt-P0a-QYD4If7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893183845</pqid></control><display><type>article</type><title>Synthesis of Porous Materials Using Magnesium Slag and Their Adsorption Performance for Lead Ions in Aqueous Solution</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Lu, Guangjun ; Han, Jingang ; Chen, Ying ; Xue, Hongjiao ; Qiu, Ruifang ; Zhou, Xinxing ; Ma, Zhibin</creator><creatorcontrib>Lu, Guangjun ; Han, Jingang ; Chen, Ying ; Xue, Hongjiao ; Qiu, Ruifang ; Zhou, Xinxing ; Ma, Zhibin</creatorcontrib><description>Magnesium slag-based porous materials (MSBPM) were successfully synthesized using alkali activation and foaming methods as an effective adsorbent for Pb2+ in solution. The effects of foaming agent type, foaming agent dosage, alkali dosage, and water glass modulus on the properties of the MSBPM were studied, and the micromorphology and porosity of the MSBPM were observed using microscopy. The influence of pH value, initial concentration, and adsorbent dosage on the Pb2+ adsorption was investigated. The results showed that a porous material (MSBPM-H2O2) with high compressive strength (8.46 MPa) and excellent Pb2+ adsorption capacity (396.11 mg·g−1) was obtained under the optimal conditions: a H2O2 dosage of 3%, an alkali dosage of 9%, a water glass modulus of 1.3, and a liquid–solid ratio of 0.5. Another porous material (MSBPM-Al) with a compressive strength of 5.27 MPa and the Pb2+ adsorption capacity of 424.89 mg·g−1 was obtained under the optimal conditions: an aluminum powder dosage of 1.5‰, an alkali dosage of 8%, a water glass modulus of 1.0, and a liquid–solid ratio of 0.5. When the pH of the aqueous solution is 6 and the initial Pb2+ concentrations are 200~500 mg·L−1, the MSBPM-H2O2 and MSBPM-Al can remove more than 99% of Pb2+ in the solution. The adsorption process of both materials followed the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process was a single-molecule layer chemical adsorption.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16227083</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbents ; Adsorption ; Aluminum ; Aqueous solutions ; Caustic soda ; Cement ; Chemical precipitation ; Compressive strength ; Curing ; Dosage ; Foaming agents ; Heavy metals ; Humidity ; Hydrogen peroxide ; Industrial development ; Lead ; Magnesium ; Manufacturing ; Membrane separation ; Morphology ; Nitrates ; Plating ; Porous materials ; Raw materials ; Reagents ; Slag ; Solids</subject><ispartof>Materials, 2023-11, Vol.16 (22), p.7083</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-9d36a4a87370d00fc9519687b9060997c96ab22013e0758058762dd597aff1213</citedby><cites>FETCH-LOGICAL-c367t-9d36a4a87370d00fc9519687b9060997c96ab22013e0758058762dd597aff1213</cites><orcidid>0000-0002-8915-3614 ; 0000-0003-2648-5002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Guangjun</creatorcontrib><creatorcontrib>Han, Jingang</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Xue, Hongjiao</creatorcontrib><creatorcontrib>Qiu, Ruifang</creatorcontrib><creatorcontrib>Zhou, Xinxing</creatorcontrib><creatorcontrib>Ma, Zhibin</creatorcontrib><title>Synthesis of Porous Materials Using Magnesium Slag and Their Adsorption Performance for Lead Ions in Aqueous Solution</title><title>Materials</title><description>Magnesium slag-based porous materials (MSBPM) were successfully synthesized using alkali activation and foaming methods as an effective adsorbent for Pb2+ in solution. The effects of foaming agent type, foaming agent dosage, alkali dosage, and water glass modulus on the properties of the MSBPM were studied, and the micromorphology and porosity of the MSBPM were observed using microscopy. The influence of pH value, initial concentration, and adsorbent dosage on the Pb2+ adsorption was investigated. The results showed that a porous material (MSBPM-H2O2) with high compressive strength (8.46 MPa) and excellent Pb2+ adsorption capacity (396.11 mg·g−1) was obtained under the optimal conditions: a H2O2 dosage of 3%, an alkali dosage of 9%, a water glass modulus of 1.3, and a liquid–solid ratio of 0.5. Another porous material (MSBPM-Al) with a compressive strength of 5.27 MPa and the Pb2+ adsorption capacity of 424.89 mg·g−1 was obtained under the optimal conditions: an aluminum powder dosage of 1.5‰, an alkali dosage of 8%, a water glass modulus of 1.0, and a liquid–solid ratio of 0.5. When the pH of the aqueous solution is 6 and the initial Pb2+ concentrations are 200~500 mg·L−1, the MSBPM-H2O2 and MSBPM-Al can remove more than 99% of Pb2+ in the solution. The adsorption process of both materials followed the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process was a single-molecule layer chemical adsorption.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Aluminum</subject><subject>Aqueous solutions</subject><subject>Caustic soda</subject><subject>Cement</subject><subject>Chemical precipitation</subject><subject>Compressive strength</subject><subject>Curing</subject><subject>Dosage</subject><subject>Foaming agents</subject><subject>Heavy metals</subject><subject>Humidity</subject><subject>Hydrogen peroxide</subject><subject>Industrial development</subject><subject>Lead</subject><subject>Magnesium</subject><subject>Manufacturing</subject><subject>Membrane separation</subject><subject>Morphology</subject><subject>Nitrates</subject><subject>Plating</subject><subject>Porous materials</subject><subject>Raw materials</subject><subject>Reagents</subject><subject>Slag</subject><subject>Solids</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkclqwzAQhk1poSHNpU8g6KUUkmqxtRxN6BJIaSDJ2Si25CjYUirZh7x95aTQ0pnDLHzz88MkyT2CM0IEfG4lohgzyMlVMkJC0CkSaXr9p79NJiEcYAxCEMdilPTrk-32KpgAnAYr510fwIfslDeyCWAbjK3jXNuI9C1YN7IG0lZgs1fGg7wKzh874yxYKa-db6UtFYgNWCpZgYWzARgL8q9eDcJr1_QDfZfc6CivJj91nGxfXzbz9-ny820xz5fTklDWTUVFqEwlZ4TBCkJdigwJytlOQAqFYKWgcocxRERBlnGYcUZxVWWCSa0RRmScPF50j95FC6ErWhNK1TTSDn4KzAXhKc5oGtGHf-jB9d5Gd2cK8QhmkZpdqFo2qjBWu87LMmalWlM6q7SJ-5yxlGAszrJPl4PSuxC80sXRm1b6U4FgMXyt-P0a-QYD4If7</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Lu, Guangjun</creator><creator>Han, Jingang</creator><creator>Chen, Ying</creator><creator>Xue, Hongjiao</creator><creator>Qiu, Ruifang</creator><creator>Zhou, Xinxing</creator><creator>Ma, Zhibin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8915-3614</orcidid><orcidid>https://orcid.org/0000-0003-2648-5002</orcidid></search><sort><creationdate>20231101</creationdate><title>Synthesis of Porous Materials Using Magnesium Slag and Their Adsorption Performance for Lead Ions in Aqueous Solution</title><author>Lu, Guangjun ; Han, Jingang ; Chen, Ying ; Xue, Hongjiao ; Qiu, Ruifang ; Zhou, Xinxing ; Ma, Zhibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9d36a4a87370d00fc9519687b9060997c96ab22013e0758058762dd597aff1213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Aluminum</topic><topic>Aqueous solutions</topic><topic>Caustic soda</topic><topic>Cement</topic><topic>Chemical precipitation</topic><topic>Compressive strength</topic><topic>Curing</topic><topic>Dosage</topic><topic>Foaming agents</topic><topic>Heavy metals</topic><topic>Humidity</topic><topic>Hydrogen peroxide</topic><topic>Industrial development</topic><topic>Lead</topic><topic>Magnesium</topic><topic>Manufacturing</topic><topic>Membrane separation</topic><topic>Morphology</topic><topic>Nitrates</topic><topic>Plating</topic><topic>Porous materials</topic><topic>Raw materials</topic><topic>Reagents</topic><topic>Slag</topic><topic>Solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Guangjun</creatorcontrib><creatorcontrib>Han, Jingang</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Xue, Hongjiao</creatorcontrib><creatorcontrib>Qiu, Ruifang</creatorcontrib><creatorcontrib>Zhou, Xinxing</creatorcontrib><creatorcontrib>Ma, Zhibin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Guangjun</au><au>Han, Jingang</au><au>Chen, Ying</au><au>Xue, Hongjiao</au><au>Qiu, Ruifang</au><au>Zhou, Xinxing</au><au>Ma, Zhibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Porous Materials Using Magnesium Slag and Their Adsorption Performance for Lead Ions in Aqueous Solution</atitle><jtitle>Materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>16</volume><issue>22</issue><spage>7083</spage><pages>7083-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Magnesium slag-based porous materials (MSBPM) were successfully synthesized using alkali activation and foaming methods as an effective adsorbent for Pb2+ in solution. The effects of foaming agent type, foaming agent dosage, alkali dosage, and water glass modulus on the properties of the MSBPM were studied, and the micromorphology and porosity of the MSBPM were observed using microscopy. The influence of pH value, initial concentration, and adsorbent dosage on the Pb2+ adsorption was investigated. The results showed that a porous material (MSBPM-H2O2) with high compressive strength (8.46 MPa) and excellent Pb2+ adsorption capacity (396.11 mg·g−1) was obtained under the optimal conditions: a H2O2 dosage of 3%, an alkali dosage of 9%, a water glass modulus of 1.3, and a liquid–solid ratio of 0.5. Another porous material (MSBPM-Al) with a compressive strength of 5.27 MPa and the Pb2+ adsorption capacity of 424.89 mg·g−1 was obtained under the optimal conditions: an aluminum powder dosage of 1.5‰, an alkali dosage of 8%, a water glass modulus of 1.0, and a liquid–solid ratio of 0.5. When the pH of the aqueous solution is 6 and the initial Pb2+ concentrations are 200~500 mg·L−1, the MSBPM-H2O2 and MSBPM-Al can remove more than 99% of Pb2+ in the solution. The adsorption process of both materials followed the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process was a single-molecule layer chemical adsorption.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma16227083</doi><orcidid>https://orcid.org/0000-0002-8915-3614</orcidid><orcidid>https://orcid.org/0000-0003-2648-5002</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-11, Vol.16 (22), p.7083
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_2893842564
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Adsorbents
Adsorption
Aluminum
Aqueous solutions
Caustic soda
Cement
Chemical precipitation
Compressive strength
Curing
Dosage
Foaming agents
Heavy metals
Humidity
Hydrogen peroxide
Industrial development
Lead
Magnesium
Manufacturing
Membrane separation
Morphology
Nitrates
Plating
Porous materials
Raw materials
Reagents
Slag
Solids
title Synthesis of Porous Materials Using Magnesium Slag and Their Adsorption Performance for Lead Ions in Aqueous Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Porous%20Materials%20Using%20Magnesium%20Slag%20and%20Their%20Adsorption%20Performance%20for%20Lead%20Ions%20in%20Aqueous%20Solution&rft.jtitle=Materials&rft.au=Lu,%20Guangjun&rft.date=2023-11-01&rft.volume=16&rft.issue=22&rft.spage=7083&rft.pages=7083-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16227083&rft_dat=%3Cgale_proqu%3EA774322964%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893183845&rft_id=info:pmid/&rft_galeid=A774322964&rfr_iscdi=true