Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis
Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, a...
Gespeichert in:
Veröffentlicht in: | Materials 2023-11, Vol.16 (22), p.7160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 7160 |
container_title | Materials |
container_volume | 16 |
creator | Zhao, Hui Mi, Bao Li, Na Wang, Teng Xue, Yongjie |
description | Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, and kinetics were evaluated using thermogravimetric analysis and Fourier transform infrared spectroscopy (TG-FTIR). The results showed that incorporating RH into RAB improved its pyrolysis characteristics. The interactions between RAB and RH showed initial inhibition followed by subsequent promotion. The primary gaseous products formed during co-pyrolysis were aliphatic hydrocarbons, water, and carbon dioxide, along with smaller amounts of aldehydes and alcohols originating from RH pyrolysis. All average activation energy values for the blends, determined through iso-conversional methods, decreased with RH addition. The combined kinetic analysis revealed two distinct mechanisms: (1) at the lower conversion range, the pyrolysis of the blend followed a random nucleation and three-dimensional growth mechanism, while (2) at the higher conversion range, the control mechanism transitioned into three-dimensional diffusion. |
doi_str_mv | 10.3390/ma16227160 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2893842392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774323052</galeid><sourcerecordid>A774323052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b75ab9af6005fa7ab6e8f10552b57091ab0110a6bfb8660159614665767503103</originalsourceid><addsrcrecordid>eNpdkd9r1EAQgIMoWGpf_AsWfBEhdX9kd7O-Xa9qxYJy1OcwSWZ7UzfZczepnOD_bmoExZmHGYZvPgamKJ4Lfq6U468HEEZKKwx_VJwI50wpXFU9_qd_WpzlfMeXUErU0p0UP3c4TxToB0wURxY922EXgAbs2SYf9hAmdkFjj4ndE7BtLD8fUwzHTJl9p2nPdtQhu5rz1zfsZo9pgMAu8TZBvwovcA_3FFNmMPbsI404Ucc2I_xWPCueeAgZz_7U0-LLu7c326vy-tP7D9vNddkpaaaytRpaB95wrj1YaA3WXnCtZastdwJaLgQH0_q2NoYL7YyojNHWWM2V4Oq0eLl6Dyl-mzFPzUC5wxBgxDjnRtZO1ZVUTi7oi__Quzin5d6VEtZKWS_U-UrdQsCGRh-nBN2SPQ7UxRE9LfONtZWSiusH7at1oUsx54S-OSQaIB0bwZuH7zV_v6d-AQsKit8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893177228</pqid></control><display><type>article</type><title>Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Hui ; Mi, Bao ; Li, Na ; Wang, Teng ; Xue, Yongjie</creator><creatorcontrib>Zhao, Hui ; Mi, Bao ; Li, Na ; Wang, Teng ; Xue, Yongjie</creatorcontrib><description>Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, and kinetics were evaluated using thermogravimetric analysis and Fourier transform infrared spectroscopy (TG-FTIR). The results showed that incorporating RH into RAB improved its pyrolysis characteristics. The interactions between RAB and RH showed initial inhibition followed by subsequent promotion. The primary gaseous products formed during co-pyrolysis were aliphatic hydrocarbons, water, and carbon dioxide, along with smaller amounts of aldehydes and alcohols originating from RH pyrolysis. All average activation energy values for the blends, determined through iso-conversional methods, decreased with RH addition. The combined kinetic analysis revealed two distinct mechanisms: (1) at the lower conversion range, the pyrolysis of the blend followed a random nucleation and three-dimensional growth mechanism, while (2) at the higher conversion range, the control mechanism transitioned into three-dimensional diffusion.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16227160</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activation energy ; Alcohols ; Aldehydes ; Aliphatic hydrocarbons ; Asphalt pavements ; Binders (materials) ; Biomass ; Carbon dioxide ; Coal ; Decomposition ; Energy ; Energy value ; Fourier transforms ; Gases ; Hydrocarbons ; Infrared analysis ; Infrared spectroscopy ; Nucleation ; Pyrolysis ; Reclamation ; Rice ; Temperature ; Thermal degradation ; Thermogravimetric analysis</subject><ispartof>Materials, 2023-11, Vol.16 (22), p.7160</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-b75ab9af6005fa7ab6e8f10552b57091ab0110a6bfb8660159614665767503103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Mi, Bao</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Xue, Yongjie</creatorcontrib><title>Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis</title><title>Materials</title><description>Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, and kinetics were evaluated using thermogravimetric analysis and Fourier transform infrared spectroscopy (TG-FTIR). The results showed that incorporating RH into RAB improved its pyrolysis characteristics. The interactions between RAB and RH showed initial inhibition followed by subsequent promotion. The primary gaseous products formed during co-pyrolysis were aliphatic hydrocarbons, water, and carbon dioxide, along with smaller amounts of aldehydes and alcohols originating from RH pyrolysis. All average activation energy values for the blends, determined through iso-conversional methods, decreased with RH addition. The combined kinetic analysis revealed two distinct mechanisms: (1) at the lower conversion range, the pyrolysis of the blend followed a random nucleation and three-dimensional growth mechanism, while (2) at the higher conversion range, the control mechanism transitioned into three-dimensional diffusion.</description><subject>Activation energy</subject><subject>Alcohols</subject><subject>Aldehydes</subject><subject>Aliphatic hydrocarbons</subject><subject>Asphalt pavements</subject><subject>Binders (materials)</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Coal</subject><subject>Decomposition</subject><subject>Energy</subject><subject>Energy value</subject><subject>Fourier transforms</subject><subject>Gases</subject><subject>Hydrocarbons</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Nucleation</subject><subject>Pyrolysis</subject><subject>Reclamation</subject><subject>Rice</subject><subject>Temperature</subject><subject>Thermal degradation</subject><subject>Thermogravimetric analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9r1EAQgIMoWGpf_AsWfBEhdX9kd7O-Xa9qxYJy1OcwSWZ7UzfZczepnOD_bmoExZmHGYZvPgamKJ4Lfq6U468HEEZKKwx_VJwI50wpXFU9_qd_WpzlfMeXUErU0p0UP3c4TxToB0wURxY922EXgAbs2SYf9hAmdkFjj4ndE7BtLD8fUwzHTJl9p2nPdtQhu5rz1zfsZo9pgMAu8TZBvwovcA_3FFNmMPbsI404Ucc2I_xWPCueeAgZz_7U0-LLu7c326vy-tP7D9vNddkpaaaytRpaB95wrj1YaA3WXnCtZastdwJaLgQH0_q2NoYL7YyojNHWWM2V4Oq0eLl6Dyl-mzFPzUC5wxBgxDjnRtZO1ZVUTi7oi__Quzin5d6VEtZKWS_U-UrdQsCGRh-nBN2SPQ7UxRE9LfONtZWSiusH7at1oUsx54S-OSQaIB0bwZuH7zV_v6d-AQsKit8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhao, Hui</creator><creator>Mi, Bao</creator><creator>Li, Na</creator><creator>Wang, Teng</creator><creator>Xue, Yongjie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20231101</creationdate><title>Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis</title><author>Zhao, Hui ; Mi, Bao ; Li, Na ; Wang, Teng ; Xue, Yongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b75ab9af6005fa7ab6e8f10552b57091ab0110a6bfb8660159614665767503103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activation energy</topic><topic>Alcohols</topic><topic>Aldehydes</topic><topic>Aliphatic hydrocarbons</topic><topic>Asphalt pavements</topic><topic>Binders (materials)</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Coal</topic><topic>Decomposition</topic><topic>Energy</topic><topic>Energy value</topic><topic>Fourier transforms</topic><topic>Gases</topic><topic>Hydrocarbons</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Nucleation</topic><topic>Pyrolysis</topic><topic>Reclamation</topic><topic>Rice</topic><topic>Temperature</topic><topic>Thermal degradation</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Mi, Bao</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Xue, Yongjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hui</au><au>Mi, Bao</au><au>Li, Na</au><au>Wang, Teng</au><au>Xue, Yongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis</atitle><jtitle>Materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>16</volume><issue>22</issue><spage>7160</spage><pages>7160-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, and kinetics were evaluated using thermogravimetric analysis and Fourier transform infrared spectroscopy (TG-FTIR). The results showed that incorporating RH into RAB improved its pyrolysis characteristics. The interactions between RAB and RH showed initial inhibition followed by subsequent promotion. The primary gaseous products formed during co-pyrolysis were aliphatic hydrocarbons, water, and carbon dioxide, along with smaller amounts of aldehydes and alcohols originating from RH pyrolysis. All average activation energy values for the blends, determined through iso-conversional methods, decreased with RH addition. The combined kinetic analysis revealed two distinct mechanisms: (1) at the lower conversion range, the pyrolysis of the blend followed a random nucleation and three-dimensional growth mechanism, while (2) at the higher conversion range, the control mechanism transitioned into three-dimensional diffusion.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma16227160</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-11, Vol.16 (22), p.7160 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_2893842392 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Activation energy Alcohols Aldehydes Aliphatic hydrocarbons Asphalt pavements Binders (materials) Biomass Carbon dioxide Coal Decomposition Energy Energy value Fourier transforms Gases Hydrocarbons Infrared analysis Infrared spectroscopy Nucleation Pyrolysis Reclamation Rice Temperature Thermal degradation Thermogravimetric analysis |
title | Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reutilization%20of%20Reclaimed%20Asphalt%20Binder%20via%20Co-Pyrolysis%20with%20Rice%20Husk:%20Thermal%20Degradation%20Behaviors%20and%20Kinetic%20Analysis&rft.jtitle=Materials&rft.au=Zhao,%20Hui&rft.date=2023-11-01&rft.volume=16&rft.issue=22&rft.spage=7160&rft.pages=7160-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16227160&rft_dat=%3Cgale_proqu%3EA774323052%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893177228&rft_id=info:pmid/&rft_galeid=A774323052&rfr_iscdi=true |