Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis

Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-11, Vol.16 (22), p.7160
Hauptverfasser: Zhao, Hui, Mi, Bao, Li, Na, Wang, Teng, Xue, Yongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 7160
container_title Materials
container_volume 16
creator Zhao, Hui
Mi, Bao
Li, Na
Wang, Teng
Xue, Yongjie
description Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, and kinetics were evaluated using thermogravimetric analysis and Fourier transform infrared spectroscopy (TG-FTIR). The results showed that incorporating RH into RAB improved its pyrolysis characteristics. The interactions between RAB and RH showed initial inhibition followed by subsequent promotion. The primary gaseous products formed during co-pyrolysis were aliphatic hydrocarbons, water, and carbon dioxide, along with smaller amounts of aldehydes and alcohols originating from RH pyrolysis. All average activation energy values for the blends, determined through iso-conversional methods, decreased with RH addition. The combined kinetic analysis revealed two distinct mechanisms: (1) at the lower conversion range, the pyrolysis of the blend followed a random nucleation and three-dimensional growth mechanism, while (2) at the higher conversion range, the control mechanism transitioned into three-dimensional diffusion.
doi_str_mv 10.3390/ma16227160
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2893842392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774323052</galeid><sourcerecordid>A774323052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b75ab9af6005fa7ab6e8f10552b57091ab0110a6bfb8660159614665767503103</originalsourceid><addsrcrecordid>eNpdkd9r1EAQgIMoWGpf_AsWfBEhdX9kd7O-Xa9qxYJy1OcwSWZ7UzfZczepnOD_bmoExZmHGYZvPgamKJ4Lfq6U468HEEZKKwx_VJwI50wpXFU9_qd_WpzlfMeXUErU0p0UP3c4TxToB0wURxY922EXgAbs2SYf9hAmdkFjj4ndE7BtLD8fUwzHTJl9p2nPdtQhu5rz1zfsZo9pgMAu8TZBvwovcA_3FFNmMPbsI404Ucc2I_xWPCueeAgZz_7U0-LLu7c326vy-tP7D9vNddkpaaaytRpaB95wrj1YaA3WXnCtZastdwJaLgQH0_q2NoYL7YyojNHWWM2V4Oq0eLl6Dyl-mzFPzUC5wxBgxDjnRtZO1ZVUTi7oi__Quzin5d6VEtZKWS_U-UrdQsCGRh-nBN2SPQ7UxRE9LfONtZWSiusH7at1oUsx54S-OSQaIB0bwZuH7zV_v6d-AQsKit8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893177228</pqid></control><display><type>article</type><title>Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Hui ; Mi, Bao ; Li, Na ; Wang, Teng ; Xue, Yongjie</creator><creatorcontrib>Zhao, Hui ; Mi, Bao ; Li, Na ; Wang, Teng ; Xue, Yongjie</creatorcontrib><description>Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, and kinetics were evaluated using thermogravimetric analysis and Fourier transform infrared spectroscopy (TG-FTIR). The results showed that incorporating RH into RAB improved its pyrolysis characteristics. The interactions between RAB and RH showed initial inhibition followed by subsequent promotion. The primary gaseous products formed during co-pyrolysis were aliphatic hydrocarbons, water, and carbon dioxide, along with smaller amounts of aldehydes and alcohols originating from RH pyrolysis. All average activation energy values for the blends, determined through iso-conversional methods, decreased with RH addition. The combined kinetic analysis revealed two distinct mechanisms: (1) at the lower conversion range, the pyrolysis of the blend followed a random nucleation and three-dimensional growth mechanism, while (2) at the higher conversion range, the control mechanism transitioned into three-dimensional diffusion.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16227160</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activation energy ; Alcohols ; Aldehydes ; Aliphatic hydrocarbons ; Asphalt pavements ; Binders (materials) ; Biomass ; Carbon dioxide ; Coal ; Decomposition ; Energy ; Energy value ; Fourier transforms ; Gases ; Hydrocarbons ; Infrared analysis ; Infrared spectroscopy ; Nucleation ; Pyrolysis ; Reclamation ; Rice ; Temperature ; Thermal degradation ; Thermogravimetric analysis</subject><ispartof>Materials, 2023-11, Vol.16 (22), p.7160</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-b75ab9af6005fa7ab6e8f10552b57091ab0110a6bfb8660159614665767503103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Mi, Bao</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Xue, Yongjie</creatorcontrib><title>Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis</title><title>Materials</title><description>Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, and kinetics were evaluated using thermogravimetric analysis and Fourier transform infrared spectroscopy (TG-FTIR). The results showed that incorporating RH into RAB improved its pyrolysis characteristics. The interactions between RAB and RH showed initial inhibition followed by subsequent promotion. The primary gaseous products formed during co-pyrolysis were aliphatic hydrocarbons, water, and carbon dioxide, along with smaller amounts of aldehydes and alcohols originating from RH pyrolysis. All average activation energy values for the blends, determined through iso-conversional methods, decreased with RH addition. The combined kinetic analysis revealed two distinct mechanisms: (1) at the lower conversion range, the pyrolysis of the blend followed a random nucleation and three-dimensional growth mechanism, while (2) at the higher conversion range, the control mechanism transitioned into three-dimensional diffusion.</description><subject>Activation energy</subject><subject>Alcohols</subject><subject>Aldehydes</subject><subject>Aliphatic hydrocarbons</subject><subject>Asphalt pavements</subject><subject>Binders (materials)</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Coal</subject><subject>Decomposition</subject><subject>Energy</subject><subject>Energy value</subject><subject>Fourier transforms</subject><subject>Gases</subject><subject>Hydrocarbons</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Nucleation</subject><subject>Pyrolysis</subject><subject>Reclamation</subject><subject>Rice</subject><subject>Temperature</subject><subject>Thermal degradation</subject><subject>Thermogravimetric analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9r1EAQgIMoWGpf_AsWfBEhdX9kd7O-Xa9qxYJy1OcwSWZ7UzfZczepnOD_bmoExZmHGYZvPgamKJ4Lfq6U468HEEZKKwx_VJwI50wpXFU9_qd_WpzlfMeXUErU0p0UP3c4TxToB0wURxY922EXgAbs2SYf9hAmdkFjj4ndE7BtLD8fUwzHTJl9p2nPdtQhu5rz1zfsZo9pgMAu8TZBvwovcA_3FFNmMPbsI404Ucc2I_xWPCueeAgZz_7U0-LLu7c326vy-tP7D9vNddkpaaaytRpaB95wrj1YaA3WXnCtZastdwJaLgQH0_q2NoYL7YyojNHWWM2V4Oq0eLl6Dyl-mzFPzUC5wxBgxDjnRtZO1ZVUTi7oi__Quzin5d6VEtZKWS_U-UrdQsCGRh-nBN2SPQ7UxRE9LfONtZWSiusH7at1oUsx54S-OSQaIB0bwZuH7zV_v6d-AQsKit8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhao, Hui</creator><creator>Mi, Bao</creator><creator>Li, Na</creator><creator>Wang, Teng</creator><creator>Xue, Yongjie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20231101</creationdate><title>Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis</title><author>Zhao, Hui ; Mi, Bao ; Li, Na ; Wang, Teng ; Xue, Yongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b75ab9af6005fa7ab6e8f10552b57091ab0110a6bfb8660159614665767503103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activation energy</topic><topic>Alcohols</topic><topic>Aldehydes</topic><topic>Aliphatic hydrocarbons</topic><topic>Asphalt pavements</topic><topic>Binders (materials)</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Coal</topic><topic>Decomposition</topic><topic>Energy</topic><topic>Energy value</topic><topic>Fourier transforms</topic><topic>Gases</topic><topic>Hydrocarbons</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Nucleation</topic><topic>Pyrolysis</topic><topic>Reclamation</topic><topic>Rice</topic><topic>Temperature</topic><topic>Thermal degradation</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Mi, Bao</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Xue, Yongjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hui</au><au>Mi, Bao</au><au>Li, Na</au><au>Wang, Teng</au><au>Xue, Yongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis</atitle><jtitle>Materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>16</volume><issue>22</issue><spage>7160</spage><pages>7160-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Realizing the utilization of reclaimed asphalt binder (RAB) and rice husk (RH) to reduce environmental pollution and expand the reutilization technique of reclaimed asphalt pavement (RAP), co-pyrolysis of RAB with RH has great potential. In this study, the co-pyrolysis behaviors, gaseous products, and kinetics were evaluated using thermogravimetric analysis and Fourier transform infrared spectroscopy (TG-FTIR). The results showed that incorporating RH into RAB improved its pyrolysis characteristics. The interactions between RAB and RH showed initial inhibition followed by subsequent promotion. The primary gaseous products formed during co-pyrolysis were aliphatic hydrocarbons, water, and carbon dioxide, along with smaller amounts of aldehydes and alcohols originating from RH pyrolysis. All average activation energy values for the blends, determined through iso-conversional methods, decreased with RH addition. The combined kinetic analysis revealed two distinct mechanisms: (1) at the lower conversion range, the pyrolysis of the blend followed a random nucleation and three-dimensional growth mechanism, while (2) at the higher conversion range, the control mechanism transitioned into three-dimensional diffusion.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma16227160</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-11, Vol.16 (22), p.7160
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_2893842392
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Activation energy
Alcohols
Aldehydes
Aliphatic hydrocarbons
Asphalt pavements
Binders (materials)
Biomass
Carbon dioxide
Coal
Decomposition
Energy
Energy value
Fourier transforms
Gases
Hydrocarbons
Infrared analysis
Infrared spectroscopy
Nucleation
Pyrolysis
Reclamation
Rice
Temperature
Thermal degradation
Thermogravimetric analysis
title Reutilization of Reclaimed Asphalt Binder via Co-Pyrolysis with Rice Husk: Thermal Degradation Behaviors and Kinetic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reutilization%20of%20Reclaimed%20Asphalt%20Binder%20via%20Co-Pyrolysis%20with%20Rice%20Husk:%20Thermal%20Degradation%20Behaviors%20and%20Kinetic%20Analysis&rft.jtitle=Materials&rft.au=Zhao,%20Hui&rft.date=2023-11-01&rft.volume=16&rft.issue=22&rft.spage=7160&rft.pages=7160-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16227160&rft_dat=%3Cgale_proqu%3EA774323052%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893177228&rft_id=info:pmid/&rft_galeid=A774323052&rfr_iscdi=true