GPR101: Modeling a constitutively active receptor linked to X-linked acrogigantism

GPR101 is a G protein-coupled receptor (GPCR) implicated in a rare form of genetic gigantism known as X-linked acrogigantism, or X-LAG. In particular, X-LAG patients harbor microduplications in the long arm of the X-chromosome that invariably include the GPR101 gene. Duplications of the GPR101 gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular graphics & modelling 2024-03, Vol.127, p.108676-108676, Article 108676
Hauptverfasser: Costanzi, Stefano, Stahr, Lea G, Trivellin, Giampaolo, Stratakis, Constantine A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:GPR101 is a G protein-coupled receptor (GPCR) implicated in a rare form of genetic gigantism known as X-linked acrogigantism, or X-LAG. In particular, X-LAG patients harbor microduplications in the long arm of the X-chromosome that invariably include the GPR101 gene. Duplications of the GPR101 gene lead to the formation of a new chromatin domain that causes over-expression of the receptor in the pituitary tumors of the patients. Notably, GPR101 is a constitutively active receptor, which stimulates cells to produce the second messenger cyclic AMP (cAMP) in the absence of ligands. Moreover, GPR101 was recently reported to constitutively activate not only the cAMP pathway via G , but also other G protein subunits (G and G ). Hence, chemicals that block the constitutive activity of GPR101, known as inverse agonists, have the potential to be useful for the development of pharmacological tools for the treatment of X-LAG. In this study, we provide structural insights into the putative structure of GPR101 based on in-house built homology models, as well as third party models based on the machine learning methods AlphaFold and AlphaFold-Multistate. Moreover, we report a molecular dynamics study, meant to further probe the constitutive activity of GPR101. Finally, we provide a structural comparison with the closest GPCRs, which suggests that GPR101 does not share their natural ligands. While this manuscript was under review, cryo-electron microscopy structures of GPR101 were reported. These structures are expected to enable computer-aided ligand discovery efforts targeting GPR101.
ISSN:1093-3263
1873-4243
DOI:10.1016/j.jmgm.2023.108676