Screening strategy for developing thermoelectric interface materials

Thermoelectric interface materials (TEiMs) are essential to the development of thermoelectric generators. Common TEiMs use pure metals or binary alloys but have performance stability issues. Conventional selection of TEiMs generally relies on trial-and-error experimentation. We developed a TEiM scre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2023-11, Vol.382 (6673), p.921-928
Hauptverfasser: Xie, Liangjun, Yin, Li, Yu, Yuan, Peng, Guyang, Song, Shaowei, Ying, Pingjun, Cai, Songting, Sun, Yuxin, Shi, Wenjing, Wu, Hao, Qu, Nuo, Guo, Fengkai, Cai, Wei, Wu, Haijun, Zhang, Qian, Nielsch, Kornelius, Ren, Zhifeng, Liu, Zihang, Sui, Jiehe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 928
container_issue 6673
container_start_page 921
container_title Science (American Association for the Advancement of Science)
container_volume 382
creator Xie, Liangjun
Yin, Li
Yu, Yuan
Peng, Guyang
Song, Shaowei
Ying, Pingjun
Cai, Songting
Sun, Yuxin
Shi, Wenjing
Wu, Hao
Qu, Nuo
Guo, Fengkai
Cai, Wei
Wu, Haijun
Zhang, Qian
Nielsch, Kornelius
Ren, Zhifeng
Liu, Zihang
Sui, Jiehe
description Thermoelectric interface materials (TEiMs) are essential to the development of thermoelectric generators. Common TEiMs use pure metals or binary alloys but have performance stability issues. Conventional selection of TEiMs generally relies on trial-and-error experimentation. We developed a TEiM screening strategy that is based on phase diagram predictions by density functional theory calculations. By combining the phase diagram with electrical resistivity and melting points of potential reaction products, we discovered that the semimetal MgCuSb is a reliable TEiM for high-performance MgAgSb. The MgCuSb/MgAgSb junction exhibits low interfacial contact resistivity (ρ c
doi_str_mv 10.1126/science.adg8392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2893840040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892696224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-fc1cd8a0145bfd677dbd3fa6a8c73817240bddb4d606e8d531a4218f9b5842d13</originalsourceid><addsrcrecordid>eNpd0MtLAzEQBvAgCtbq2euCFy_bTh6bzR6lPqHgQT2HbDKpKfuoyVbof--W7snTBzM_huEj5JbCglIml8kG7CwujNsoXrEzMqNQFXnFgJ-TGQCXuYKyuCRXKW0Bxl3FZ-Txw0bELnSbLA3RDLg5ZL6PmcNfbPrdcT58Y2x7bNAOMdgsdANGbyxm7chjME26Jhd-DLyZck6-np8-V6_5-v3lbfWwzi0HNuTeUuuUASqK2jtZlq523BtplC25oiUTUDtXCydBonIFp0YwqnxVF0owR_mc3J_u7mL_s8c06DYki01jOuz3STNVcSUABIz07h_d9vvYjd8dFZOVZEyManlSNvYpRfR6F0Nr4kFT0MdW9dSqnlrlf3CObcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892696224</pqid></control><display><type>article</type><title>Screening strategy for developing thermoelectric interface materials</title><source>American Association for the Advancement of Science</source><creator>Xie, Liangjun ; Yin, Li ; Yu, Yuan ; Peng, Guyang ; Song, Shaowei ; Ying, Pingjun ; Cai, Songting ; Sun, Yuxin ; Shi, Wenjing ; Wu, Hao ; Qu, Nuo ; Guo, Fengkai ; Cai, Wei ; Wu, Haijun ; Zhang, Qian ; Nielsch, Kornelius ; Ren, Zhifeng ; Liu, Zihang ; Sui, Jiehe</creator><creatorcontrib>Xie, Liangjun ; Yin, Li ; Yu, Yuan ; Peng, Guyang ; Song, Shaowei ; Ying, Pingjun ; Cai, Songting ; Sun, Yuxin ; Shi, Wenjing ; Wu, Hao ; Qu, Nuo ; Guo, Fengkai ; Cai, Wei ; Wu, Haijun ; Zhang, Qian ; Nielsch, Kornelius ; Ren, Zhifeng ; Liu, Zihang ; Sui, Jiehe</creatorcontrib><description>Thermoelectric interface materials (TEiMs) are essential to the development of thermoelectric generators. Common TEiMs use pure metals or binary alloys but have performance stability issues. Conventional selection of TEiMs generally relies on trial-and-error experimentation. We developed a TEiM screening strategy that is based on phase diagram predictions by density functional theory calculations. By combining the phase diagram with electrical resistivity and melting points of potential reaction products, we discovered that the semimetal MgCuSb is a reliable TEiM for high-performance MgAgSb. The MgCuSb/MgAgSb junction exhibits low interfacial contact resistivity (ρ c &lt;1 microhm square centimeter) even after annealing at 553 kelvin for 16 days. The fabricated two-pair MgAgSb/Mg 3.2 Bi 1.5 Sb 0.5 module demonstrated a high conversion efficiency of 9.25% under a 300 kelvin temperature gradient. We performed an international round-robin testing of module performance to confirm the measurement reliability. The strategy can be applied to other thermoelectric materials, filling a vital gap in the development of thermoelectric modules. Thermoelectric modules convert waste heat into electricity, but finding materials that go in between the thermoelectric material and the electrodes is challenging because inappropriate interface materials can drive failure of the thermoelectric module. Xie et al . developed a screening strategy for isolating more chemically complex interface candidate materials (see the Perspective by Xu and Tian). Using this strategy, the authors identified a magnesium–copper–antimony semimetal that is an excellent interface material for a specific type of high-performance thermoelectric module. This approach should apply to a wide range of material chemistries. —Brent Grocholski A strategy to find thermoelectric interface materials shows promise for developing high-performance thermoelectric modules.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adg8392</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Antimony ; Magnesium ; Materials selection ; Modules ; Screening ; Thermoelectric materials</subject><ispartof>Science (American Association for the Advancement of Science), 2023-11, Vol.382 (6673), p.921-928</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-fc1cd8a0145bfd677dbd3fa6a8c73817240bddb4d606e8d531a4218f9b5842d13</citedby><cites>FETCH-LOGICAL-c302t-fc1cd8a0145bfd677dbd3fa6a8c73817240bddb4d606e8d531a4218f9b5842d13</cites><orcidid>0000-0001-5975-9781 ; 0000-0001-8233-3332 ; 0000-0002-2040-1632 ; 0000-0002-3148-6600 ; 0000-0003-2271-7726 ; 0009-0008-4695-9109 ; 0000-0002-7303-379X ; 0000-0001-6474-9289 ; 0000-0003-4906-9183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Xie, Liangjun</creatorcontrib><creatorcontrib>Yin, Li</creatorcontrib><creatorcontrib>Yu, Yuan</creatorcontrib><creatorcontrib>Peng, Guyang</creatorcontrib><creatorcontrib>Song, Shaowei</creatorcontrib><creatorcontrib>Ying, Pingjun</creatorcontrib><creatorcontrib>Cai, Songting</creatorcontrib><creatorcontrib>Sun, Yuxin</creatorcontrib><creatorcontrib>Shi, Wenjing</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Qu, Nuo</creatorcontrib><creatorcontrib>Guo, Fengkai</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Wu, Haijun</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Nielsch, Kornelius</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Liu, Zihang</creatorcontrib><creatorcontrib>Sui, Jiehe</creatorcontrib><title>Screening strategy for developing thermoelectric interface materials</title><title>Science (American Association for the Advancement of Science)</title><description>Thermoelectric interface materials (TEiMs) are essential to the development of thermoelectric generators. Common TEiMs use pure metals or binary alloys but have performance stability issues. Conventional selection of TEiMs generally relies on trial-and-error experimentation. We developed a TEiM screening strategy that is based on phase diagram predictions by density functional theory calculations. By combining the phase diagram with electrical resistivity and melting points of potential reaction products, we discovered that the semimetal MgCuSb is a reliable TEiM for high-performance MgAgSb. The MgCuSb/MgAgSb junction exhibits low interfacial contact resistivity (ρ c &lt;1 microhm square centimeter) even after annealing at 553 kelvin for 16 days. The fabricated two-pair MgAgSb/Mg 3.2 Bi 1.5 Sb 0.5 module demonstrated a high conversion efficiency of 9.25% under a 300 kelvin temperature gradient. We performed an international round-robin testing of module performance to confirm the measurement reliability. The strategy can be applied to other thermoelectric materials, filling a vital gap in the development of thermoelectric modules. Thermoelectric modules convert waste heat into electricity, but finding materials that go in between the thermoelectric material and the electrodes is challenging because inappropriate interface materials can drive failure of the thermoelectric module. Xie et al . developed a screening strategy for isolating more chemically complex interface candidate materials (see the Perspective by Xu and Tian). Using this strategy, the authors identified a magnesium–copper–antimony semimetal that is an excellent interface material for a specific type of high-performance thermoelectric module. This approach should apply to a wide range of material chemistries. —Brent Grocholski A strategy to find thermoelectric interface materials shows promise for developing high-performance thermoelectric modules.</description><subject>Antimony</subject><subject>Magnesium</subject><subject>Materials selection</subject><subject>Modules</subject><subject>Screening</subject><subject>Thermoelectric materials</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0MtLAzEQBvAgCtbq2euCFy_bTh6bzR6lPqHgQT2HbDKpKfuoyVbof--W7snTBzM_huEj5JbCglIml8kG7CwujNsoXrEzMqNQFXnFgJ-TGQCXuYKyuCRXKW0Bxl3FZ-Txw0bELnSbLA3RDLg5ZL6PmcNfbPrdcT58Y2x7bNAOMdgsdANGbyxm7chjME26Jhd-DLyZck6-np8-V6_5-v3lbfWwzi0HNuTeUuuUASqK2jtZlq523BtplC25oiUTUDtXCydBonIFp0YwqnxVF0owR_mc3J_u7mL_s8c06DYki01jOuz3STNVcSUABIz07h_d9vvYjd8dFZOVZEyManlSNvYpRfR6F0Nr4kFT0MdW9dSqnlrlf3CObcQ</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>Xie, Liangjun</creator><creator>Yin, Li</creator><creator>Yu, Yuan</creator><creator>Peng, Guyang</creator><creator>Song, Shaowei</creator><creator>Ying, Pingjun</creator><creator>Cai, Songting</creator><creator>Sun, Yuxin</creator><creator>Shi, Wenjing</creator><creator>Wu, Hao</creator><creator>Qu, Nuo</creator><creator>Guo, Fengkai</creator><creator>Cai, Wei</creator><creator>Wu, Haijun</creator><creator>Zhang, Qian</creator><creator>Nielsch, Kornelius</creator><creator>Ren, Zhifeng</creator><creator>Liu, Zihang</creator><creator>Sui, Jiehe</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5975-9781</orcidid><orcidid>https://orcid.org/0000-0001-8233-3332</orcidid><orcidid>https://orcid.org/0000-0002-2040-1632</orcidid><orcidid>https://orcid.org/0000-0002-3148-6600</orcidid><orcidid>https://orcid.org/0000-0003-2271-7726</orcidid><orcidid>https://orcid.org/0009-0008-4695-9109</orcidid><orcidid>https://orcid.org/0000-0002-7303-379X</orcidid><orcidid>https://orcid.org/0000-0001-6474-9289</orcidid><orcidid>https://orcid.org/0000-0003-4906-9183</orcidid></search><sort><creationdate>20231124</creationdate><title>Screening strategy for developing thermoelectric interface materials</title><author>Xie, Liangjun ; Yin, Li ; Yu, Yuan ; Peng, Guyang ; Song, Shaowei ; Ying, Pingjun ; Cai, Songting ; Sun, Yuxin ; Shi, Wenjing ; Wu, Hao ; Qu, Nuo ; Guo, Fengkai ; Cai, Wei ; Wu, Haijun ; Zhang, Qian ; Nielsch, Kornelius ; Ren, Zhifeng ; Liu, Zihang ; Sui, Jiehe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-fc1cd8a0145bfd677dbd3fa6a8c73817240bddb4d606e8d531a4218f9b5842d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antimony</topic><topic>Magnesium</topic><topic>Materials selection</topic><topic>Modules</topic><topic>Screening</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Liangjun</creatorcontrib><creatorcontrib>Yin, Li</creatorcontrib><creatorcontrib>Yu, Yuan</creatorcontrib><creatorcontrib>Peng, Guyang</creatorcontrib><creatorcontrib>Song, Shaowei</creatorcontrib><creatorcontrib>Ying, Pingjun</creatorcontrib><creatorcontrib>Cai, Songting</creatorcontrib><creatorcontrib>Sun, Yuxin</creatorcontrib><creatorcontrib>Shi, Wenjing</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Qu, Nuo</creatorcontrib><creatorcontrib>Guo, Fengkai</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Wu, Haijun</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Nielsch, Kornelius</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Liu, Zihang</creatorcontrib><creatorcontrib>Sui, Jiehe</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Liangjun</au><au>Yin, Li</au><au>Yu, Yuan</au><au>Peng, Guyang</au><au>Song, Shaowei</au><au>Ying, Pingjun</au><au>Cai, Songting</au><au>Sun, Yuxin</au><au>Shi, Wenjing</au><au>Wu, Hao</au><au>Qu, Nuo</au><au>Guo, Fengkai</au><au>Cai, Wei</au><au>Wu, Haijun</au><au>Zhang, Qian</au><au>Nielsch, Kornelius</au><au>Ren, Zhifeng</au><au>Liu, Zihang</au><au>Sui, Jiehe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening strategy for developing thermoelectric interface materials</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2023-11-24</date><risdate>2023</risdate><volume>382</volume><issue>6673</issue><spage>921</spage><epage>928</epage><pages>921-928</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Thermoelectric interface materials (TEiMs) are essential to the development of thermoelectric generators. Common TEiMs use pure metals or binary alloys but have performance stability issues. Conventional selection of TEiMs generally relies on trial-and-error experimentation. We developed a TEiM screening strategy that is based on phase diagram predictions by density functional theory calculations. By combining the phase diagram with electrical resistivity and melting points of potential reaction products, we discovered that the semimetal MgCuSb is a reliable TEiM for high-performance MgAgSb. The MgCuSb/MgAgSb junction exhibits low interfacial contact resistivity (ρ c &lt;1 microhm square centimeter) even after annealing at 553 kelvin for 16 days. The fabricated two-pair MgAgSb/Mg 3.2 Bi 1.5 Sb 0.5 module demonstrated a high conversion efficiency of 9.25% under a 300 kelvin temperature gradient. We performed an international round-robin testing of module performance to confirm the measurement reliability. The strategy can be applied to other thermoelectric materials, filling a vital gap in the development of thermoelectric modules. Thermoelectric modules convert waste heat into electricity, but finding materials that go in between the thermoelectric material and the electrodes is challenging because inappropriate interface materials can drive failure of the thermoelectric module. Xie et al . developed a screening strategy for isolating more chemically complex interface candidate materials (see the Perspective by Xu and Tian). Using this strategy, the authors identified a magnesium–copper–antimony semimetal that is an excellent interface material for a specific type of high-performance thermoelectric module. This approach should apply to a wide range of material chemistries. —Brent Grocholski A strategy to find thermoelectric interface materials shows promise for developing high-performance thermoelectric modules.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.adg8392</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5975-9781</orcidid><orcidid>https://orcid.org/0000-0001-8233-3332</orcidid><orcidid>https://orcid.org/0000-0002-2040-1632</orcidid><orcidid>https://orcid.org/0000-0002-3148-6600</orcidid><orcidid>https://orcid.org/0000-0003-2271-7726</orcidid><orcidid>https://orcid.org/0009-0008-4695-9109</orcidid><orcidid>https://orcid.org/0000-0002-7303-379X</orcidid><orcidid>https://orcid.org/0000-0001-6474-9289</orcidid><orcidid>https://orcid.org/0000-0003-4906-9183</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2023-11, Vol.382 (6673), p.921-928
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2893840040
source American Association for the Advancement of Science
subjects Antimony
Magnesium
Materials selection
Modules
Screening
Thermoelectric materials
title Screening strategy for developing thermoelectric interface materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20strategy%20for%20developing%20thermoelectric%20interface%20materials&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Xie,%20Liangjun&rft.date=2023-11-24&rft.volume=382&rft.issue=6673&rft.spage=921&rft.epage=928&rft.pages=921-928&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adg8392&rft_dat=%3Cproquest_cross%3E2892696224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892696224&rft_id=info:pmid/&rfr_iscdi=true