Engineering Antimicrobial Metal–Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing

Antibiotic‐resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-02, Vol.36 (6), p.e2307680-n/a
Hauptverfasser: Yu, Rongxin, Chen, Hongping, He, Jian, Zhang, Zhichao, Zhou, Jiajing, Zheng, Qinqin, Fu, Zhouping, Lu, Chengyin, Lin, Zhixing, Caruso, Frank, Zhang, Xiangchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e2307680
container_title Advanced materials (Weinheim)
container_volume 36
creator Yu, Rongxin
Chen, Hongping
He, Jian
Zhang, Zhichao
Zhou, Jiajing
Zheng, Qinqin
Fu, Zhouping
Lu, Chengyin
Lin, Zhixing
Caruso, Frank
Zhang, Xiangchun
description Antibiotic‐resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal‒phenolic network (am‐MPN) NPs through the one‐step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+) in aqueous solution. The Cu2+‐based am‐MPN NPs display lower Cu2+ antimicrobial concentrations (by 10–1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol‐based am‐MPN NPs. The NPs exhibit excellent performance against multidrug‐resistant bacteria (e.g., methicillin‐resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA‐infected skin wounds. This study provides insights on the antimicrobial properties of metal‒phenolic materials and the rational design of antimicrobial metal‒organic materials. Antimicrobial, highly biocompatible metal‐phenolic network nanoparticles (am‐MPN NPs) are engineered and applied across different models (cells, blood, zebrafish, and mice). The NPs perform efficiently against multidrug‐resistant bacteria owing to their antimicrobial properties, which are related to 1) cell wall damage, 2) reactive oxygen species (ROS), and 3) quinoprotein production. Moreover, they inhibit and eradicate bacterial biofilms and promote the healing of bacterial‐infected skin wounds.
doi_str_mv 10.1002/adma.202307680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2893839492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893839492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-1dd78a36b5191d7403f844466cce14d56119875e1d50a1c75dc5f973564cd873</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqFw5YgsceGyqb3-PoZSCFI_OFTiaDm2N3Hx2sHeVZQb_4F_yC9ho7RF4tLTHOaZZ0bzAvAWozlGqD0zrjfzFrUECS7RMzDDrMUNRYo9BzOkCGsUp_IEvKr1DiGkOOIvwQkRSgmq5Az0F2kdkvclpDVcpCH0wZa8CibCKz-Y-OfX728bn3IMFl77YZfLD3htUt6aMgQbfYW7MGzgMqw38GPINvdbM4RViGHYwy4X-D2PycGlN3Ha8Bq86Eys_s19PQW3ny9uz5fN5c2Xr-eLy8ZSTFCDnRPSEL5iWGEnKCKdpJRybq3H1DGOsZKCeewYMtgK5izrlCCMU-ukIKfgw1G7Lfnn6Oug-1Ctj9Ekn8eqW6mIJIqqdkLf_4fe5bGk6TjdTu2WEkYP1PxITb-ptfhOb0voTdlrjPQhB33IQT_mMA28u9eOq967R_zh8ROgjsAuRL9_QqcXn64W_-R_AfWjlVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923243542</pqid></control><display><type>article</type><title>Engineering Antimicrobial Metal–Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing</title><source>Wiley-Blackwell Journals</source><creator>Yu, Rongxin ; Chen, Hongping ; He, Jian ; Zhang, Zhichao ; Zhou, Jiajing ; Zheng, Qinqin ; Fu, Zhouping ; Lu, Chengyin ; Lin, Zhixing ; Caruso, Frank ; Zhang, Xiangchun</creator><creatorcontrib>Yu, Rongxin ; Chen, Hongping ; He, Jian ; Zhang, Zhichao ; Zhou, Jiajing ; Zheng, Qinqin ; Fu, Zhouping ; Lu, Chengyin ; Lin, Zhixing ; Caruso, Frank ; Zhang, Xiangchun</creatorcontrib><description>Antibiotic‐resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal‒phenolic network (am‐MPN) NPs through the one‐step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+) in aqueous solution. The Cu2+‐based am‐MPN NPs display lower Cu2+ antimicrobial concentrations (by 10–1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol‐based am‐MPN NPs. The NPs exhibit excellent performance against multidrug‐resistant bacteria (e.g., methicillin‐resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA‐infected skin wounds. This study provides insights on the antimicrobial properties of metal‒phenolic materials and the rational design of antimicrobial metal‒organic materials. Antimicrobial, highly biocompatible metal‐phenolic network nanoparticles (am‐MPN NPs) are engineered and applied across different models (cells, blood, zebrafish, and mice). The NPs perform efficiently against multidrug‐resistant bacteria owing to their antimicrobial properties, which are related to 1) cell wall damage, 2) reactive oxygen species (ROS), and 3) quinoprotein production. Moreover, they inhibit and eradicate bacterial biofilms and promote the healing of bacterial‐infected skin wounds.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202307680</identifier><identifier>PMID: 37997498</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Antimicrobial agents ; Aqueous solutions ; Bacteria ; Biocompatibility ; biofilms ; Copper ; Drug resistance ; metal–organic materials ; Microorganisms ; Nanomaterials ; Nanoparticles ; Organic materials ; Polyphenols ; Public health ; quinoprotein ; selective antimicrobial ; Staphylococcus infections ; Wound healing ; Zebrafish</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (6), p.e2307680-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-1dd78a36b5191d7403f844466cce14d56119875e1d50a1c75dc5f973564cd873</citedby><cites>FETCH-LOGICAL-c4130-1dd78a36b5191d7403f844466cce14d56119875e1d50a1c75dc5f973564cd873</cites><orcidid>0000-0001-5203-4737 ; 0000-0001-9292-3563 ; 0000-0001-9372-3424 ; 0000-0002-0197-497X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202307680$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202307680$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37997498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Rongxin</creatorcontrib><creatorcontrib>Chen, Hongping</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Zhang, Zhichao</creatorcontrib><creatorcontrib>Zhou, Jiajing</creatorcontrib><creatorcontrib>Zheng, Qinqin</creatorcontrib><creatorcontrib>Fu, Zhouping</creatorcontrib><creatorcontrib>Lu, Chengyin</creatorcontrib><creatorcontrib>Lin, Zhixing</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><creatorcontrib>Zhang, Xiangchun</creatorcontrib><title>Engineering Antimicrobial Metal–Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Antibiotic‐resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal‒phenolic network (am‐MPN) NPs through the one‐step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+) in aqueous solution. The Cu2+‐based am‐MPN NPs display lower Cu2+ antimicrobial concentrations (by 10–1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol‐based am‐MPN NPs. The NPs exhibit excellent performance against multidrug‐resistant bacteria (e.g., methicillin‐resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA‐infected skin wounds. This study provides insights on the antimicrobial properties of metal‒phenolic materials and the rational design of antimicrobial metal‒organic materials. Antimicrobial, highly biocompatible metal‐phenolic network nanoparticles (am‐MPN NPs) are engineered and applied across different models (cells, blood, zebrafish, and mice). The NPs perform efficiently against multidrug‐resistant bacteria owing to their antimicrobial properties, which are related to 1) cell wall damage, 2) reactive oxygen species (ROS), and 3) quinoprotein production. Moreover, they inhibit and eradicate bacterial biofilms and promote the healing of bacterial‐infected skin wounds.</description><subject>Antimicrobial agents</subject><subject>Aqueous solutions</subject><subject>Bacteria</subject><subject>Biocompatibility</subject><subject>biofilms</subject><subject>Copper</subject><subject>Drug resistance</subject><subject>metal–organic materials</subject><subject>Microorganisms</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Organic materials</subject><subject>Polyphenols</subject><subject>Public health</subject><subject>quinoprotein</subject><subject>selective antimicrobial</subject><subject>Staphylococcus infections</subject><subject>Wound healing</subject><subject>Zebrafish</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1vEzEQhi0EoqFw5YgsceGyqb3-PoZSCFI_OFTiaDm2N3Hx2sHeVZQb_4F_yC9ho7RF4tLTHOaZZ0bzAvAWozlGqD0zrjfzFrUECS7RMzDDrMUNRYo9BzOkCGsUp_IEvKr1DiGkOOIvwQkRSgmq5Az0F2kdkvclpDVcpCH0wZa8CibCKz-Y-OfX728bn3IMFl77YZfLD3htUt6aMgQbfYW7MGzgMqw38GPINvdbM4RViGHYwy4X-D2PycGlN3Ha8Bq86Eys_s19PQW3ny9uz5fN5c2Xr-eLy8ZSTFCDnRPSEL5iWGEnKCKdpJRybq3H1DGOsZKCeewYMtgK5izrlCCMU-ukIKfgw1G7Lfnn6Oug-1Ctj9Ekn8eqW6mIJIqqdkLf_4fe5bGk6TjdTu2WEkYP1PxITb-ptfhOb0voTdlrjPQhB33IQT_mMA28u9eOq967R_zh8ROgjsAuRL9_QqcXn64W_-R_AfWjlVg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yu, Rongxin</creator><creator>Chen, Hongping</creator><creator>He, Jian</creator><creator>Zhang, Zhichao</creator><creator>Zhou, Jiajing</creator><creator>Zheng, Qinqin</creator><creator>Fu, Zhouping</creator><creator>Lu, Chengyin</creator><creator>Lin, Zhixing</creator><creator>Caruso, Frank</creator><creator>Zhang, Xiangchun</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5203-4737</orcidid><orcidid>https://orcid.org/0000-0001-9292-3563</orcidid><orcidid>https://orcid.org/0000-0001-9372-3424</orcidid><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid></search><sort><creationdate>20240201</creationdate><title>Engineering Antimicrobial Metal–Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing</title><author>Yu, Rongxin ; Chen, Hongping ; He, Jian ; Zhang, Zhichao ; Zhou, Jiajing ; Zheng, Qinqin ; Fu, Zhouping ; Lu, Chengyin ; Lin, Zhixing ; Caruso, Frank ; Zhang, Xiangchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-1dd78a36b5191d7403f844466cce14d56119875e1d50a1c75dc5f973564cd873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antimicrobial agents</topic><topic>Aqueous solutions</topic><topic>Bacteria</topic><topic>Biocompatibility</topic><topic>biofilms</topic><topic>Copper</topic><topic>Drug resistance</topic><topic>metal–organic materials</topic><topic>Microorganisms</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Organic materials</topic><topic>Polyphenols</topic><topic>Public health</topic><topic>quinoprotein</topic><topic>selective antimicrobial</topic><topic>Staphylococcus infections</topic><topic>Wound healing</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Rongxin</creatorcontrib><creatorcontrib>Chen, Hongping</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Zhang, Zhichao</creatorcontrib><creatorcontrib>Zhou, Jiajing</creatorcontrib><creatorcontrib>Zheng, Qinqin</creatorcontrib><creatorcontrib>Fu, Zhouping</creatorcontrib><creatorcontrib>Lu, Chengyin</creatorcontrib><creatorcontrib>Lin, Zhixing</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><creatorcontrib>Zhang, Xiangchun</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Rongxin</au><au>Chen, Hongping</au><au>He, Jian</au><au>Zhang, Zhichao</au><au>Zhou, Jiajing</au><au>Zheng, Qinqin</au><au>Fu, Zhouping</au><au>Lu, Chengyin</au><au>Lin, Zhixing</au><au>Caruso, Frank</au><au>Zhang, Xiangchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Antimicrobial Metal–Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>6</issue><spage>e2307680</spage><epage>n/a</epage><pages>e2307680-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Antibiotic‐resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal‒phenolic network (am‐MPN) NPs through the one‐step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+) in aqueous solution. The Cu2+‐based am‐MPN NPs display lower Cu2+ antimicrobial concentrations (by 10–1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol‐based am‐MPN NPs. The NPs exhibit excellent performance against multidrug‐resistant bacteria (e.g., methicillin‐resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA‐infected skin wounds. This study provides insights on the antimicrobial properties of metal‒phenolic materials and the rational design of antimicrobial metal‒organic materials. Antimicrobial, highly biocompatible metal‐phenolic network nanoparticles (am‐MPN NPs) are engineered and applied across different models (cells, blood, zebrafish, and mice). The NPs perform efficiently against multidrug‐resistant bacteria owing to their antimicrobial properties, which are related to 1) cell wall damage, 2) reactive oxygen species (ROS), and 3) quinoprotein production. Moreover, they inhibit and eradicate bacterial biofilms and promote the healing of bacterial‐infected skin wounds.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37997498</pmid><doi>10.1002/adma.202307680</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5203-4737</orcidid><orcidid>https://orcid.org/0000-0001-9292-3563</orcidid><orcidid>https://orcid.org/0000-0001-9372-3424</orcidid><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-02, Vol.36 (6), p.e2307680-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2893839492
source Wiley-Blackwell Journals
subjects Antimicrobial agents
Aqueous solutions
Bacteria
Biocompatibility
biofilms
Copper
Drug resistance
metal–organic materials
Microorganisms
Nanomaterials
Nanoparticles
Organic materials
Polyphenols
Public health
quinoprotein
selective antimicrobial
Staphylococcus infections
Wound healing
Zebrafish
title Engineering Antimicrobial Metal–Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Antimicrobial%20Metal%E2%80%93Phenolic%20Network%20Nanoparticles%20with%20High%20Biocompatibility%20for%20Wound%20Healing&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yu,%20Rongxin&rft.date=2024-02-01&rft.volume=36&rft.issue=6&rft.spage=e2307680&rft.epage=n/a&rft.pages=e2307680-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202307680&rft_dat=%3Cproquest_cross%3E2893839492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923243542&rft_id=info:pmid/37997498&rfr_iscdi=true