Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis
Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread avail...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2024-01, Vol.91, p.103042-103042, Article 103042 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103042 |
---|---|
container_issue | |
container_start_page | 103042 |
container_title | Medical image analysis |
container_volume | 91 |
creator | Marcinkevičs, Ričards Reis Wolfertstetter, Patricia Klimiene, Ugne Chin-Cheong, Kieran Paschke, Alyssia Zerres, Julia Denzinger, Markus Niederberger, David Wellmann, Sven Ozkan, Ece Knorr, Christian Vogt, Julia E |
description | Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset. |
doi_str_mv | 10.1016/j.media.2023.103042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2893839114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893839114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-96a9f42dda42b4c7a8b9ff7983f16c51500eb3ecbdbb1a2add27092754e64ac23</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EoqXwC5BQjlxSvGU7ooqlUiUucLbG9qR1lTjBTpH670lb6Gme3rxZ9BFyz-icUZY_bectWgdzTrkYHUElvyBTJnKWlpKLy7Nm2YTcxLillBZS0msyEeWoeVZMyXrpBwx9wAF0gwl4m7iD84P-aOyaIUDsfLcO0G_2qYaINmnBbJzHpEEI3vl10nYWm5jUXUj6w1NDcCaBvkdvnXGDi7fkqoYm4t1fnZGv15fPxXu6-nhbLp5XqRGUDmmVQ1VLbi1IrqUpoNRVXRdVKWqWm4xllKIWaLTVmgEHa3lBK15kEnMJhosZeTzt7UP3vcM4qNZFg00DHrtdVLysRCkqxuQYFaeoCV2MAWvVB9dC2CtG1YGw2qojYXUgrE6Ex6mHvwM7PXbPM_9IxS91z3tp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893839114</pqid></control><display><type>article</type><title>Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Marcinkevičs, Ričards ; Reis Wolfertstetter, Patricia ; Klimiene, Ugne ; Chin-Cheong, Kieran ; Paschke, Alyssia ; Zerres, Julia ; Denzinger, Markus ; Niederberger, David ; Wellmann, Sven ; Ozkan, Ece ; Knorr, Christian ; Vogt, Julia E</creator><creatorcontrib>Marcinkevičs, Ričards ; Reis Wolfertstetter, Patricia ; Klimiene, Ugne ; Chin-Cheong, Kieran ; Paschke, Alyssia ; Zerres, Julia ; Denzinger, Markus ; Niederberger, David ; Wellmann, Sven ; Ozkan, Ece ; Knorr, Christian ; Vogt, Julia E</creatorcontrib><description>Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2023.103042</identifier><identifier>PMID: 38000257</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Appendicitis - diagnostic imaging ; Child ; Humans ; Machine Learning ; Neural Networks, Computer ; Tomography, X-Ray Computed ; Ultrasonography - methods</subject><ispartof>Medical image analysis, 2024-01, Vol.91, p.103042-103042, Article 103042</ispartof><rights>Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-96a9f42dda42b4c7a8b9ff7983f16c51500eb3ecbdbb1a2add27092754e64ac23</cites><orcidid>0009-0000-9216-6590 ; 0000-0001-8901-5062 ; 0000-0003-1580-0273 ; 0000-0002-5479-469X ; 0000-0002-9889-6348 ; 0000-0001-9230-6266 ; 0000-0002-6004-7770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38000257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marcinkevičs, Ričards</creatorcontrib><creatorcontrib>Reis Wolfertstetter, Patricia</creatorcontrib><creatorcontrib>Klimiene, Ugne</creatorcontrib><creatorcontrib>Chin-Cheong, Kieran</creatorcontrib><creatorcontrib>Paschke, Alyssia</creatorcontrib><creatorcontrib>Zerres, Julia</creatorcontrib><creatorcontrib>Denzinger, Markus</creatorcontrib><creatorcontrib>Niederberger, David</creatorcontrib><creatorcontrib>Wellmann, Sven</creatorcontrib><creatorcontrib>Ozkan, Ece</creatorcontrib><creatorcontrib>Knorr, Christian</creatorcontrib><creatorcontrib>Vogt, Julia E</creatorcontrib><title>Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset.</description><subject>Appendicitis - diagnostic imaging</subject><subject>Child</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><subject>Tomography, X-Ray Computed</subject><subject>Ultrasonography - methods</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kElPwzAQhS0EoqXwC5BQjlxSvGU7ooqlUiUucLbG9qR1lTjBTpH670lb6Gme3rxZ9BFyz-icUZY_bectWgdzTrkYHUElvyBTJnKWlpKLy7Nm2YTcxLillBZS0msyEeWoeVZMyXrpBwx9wAF0gwl4m7iD84P-aOyaIUDsfLcO0G_2qYaINmnBbJzHpEEI3vl10nYWm5jUXUj6w1NDcCaBvkdvnXGDi7fkqoYm4t1fnZGv15fPxXu6-nhbLp5XqRGUDmmVQ1VLbi1IrqUpoNRVXRdVKWqWm4xllKIWaLTVmgEHa3lBK15kEnMJhosZeTzt7UP3vcM4qNZFg00DHrtdVLysRCkqxuQYFaeoCV2MAWvVB9dC2CtG1YGw2qojYXUgrE6Ex6mHvwM7PXbPM_9IxS91z3tp</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Marcinkevičs, Ričards</creator><creator>Reis Wolfertstetter, Patricia</creator><creator>Klimiene, Ugne</creator><creator>Chin-Cheong, Kieran</creator><creator>Paschke, Alyssia</creator><creator>Zerres, Julia</creator><creator>Denzinger, Markus</creator><creator>Niederberger, David</creator><creator>Wellmann, Sven</creator><creator>Ozkan, Ece</creator><creator>Knorr, Christian</creator><creator>Vogt, Julia E</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-9216-6590</orcidid><orcidid>https://orcid.org/0000-0001-8901-5062</orcidid><orcidid>https://orcid.org/0000-0003-1580-0273</orcidid><orcidid>https://orcid.org/0000-0002-5479-469X</orcidid><orcidid>https://orcid.org/0000-0002-9889-6348</orcidid><orcidid>https://orcid.org/0000-0001-9230-6266</orcidid><orcidid>https://orcid.org/0000-0002-6004-7770</orcidid></search><sort><creationdate>202401</creationdate><title>Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis</title><author>Marcinkevičs, Ričards ; Reis Wolfertstetter, Patricia ; Klimiene, Ugne ; Chin-Cheong, Kieran ; Paschke, Alyssia ; Zerres, Julia ; Denzinger, Markus ; Niederberger, David ; Wellmann, Sven ; Ozkan, Ece ; Knorr, Christian ; Vogt, Julia E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-96a9f42dda42b4c7a8b9ff7983f16c51500eb3ecbdbb1a2add27092754e64ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Appendicitis - diagnostic imaging</topic><topic>Child</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><topic>Tomography, X-Ray Computed</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcinkevičs, Ričards</creatorcontrib><creatorcontrib>Reis Wolfertstetter, Patricia</creatorcontrib><creatorcontrib>Klimiene, Ugne</creatorcontrib><creatorcontrib>Chin-Cheong, Kieran</creatorcontrib><creatorcontrib>Paschke, Alyssia</creatorcontrib><creatorcontrib>Zerres, Julia</creatorcontrib><creatorcontrib>Denzinger, Markus</creatorcontrib><creatorcontrib>Niederberger, David</creatorcontrib><creatorcontrib>Wellmann, Sven</creatorcontrib><creatorcontrib>Ozkan, Ece</creatorcontrib><creatorcontrib>Knorr, Christian</creatorcontrib><creatorcontrib>Vogt, Julia E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcinkevičs, Ričards</au><au>Reis Wolfertstetter, Patricia</au><au>Klimiene, Ugne</au><au>Chin-Cheong, Kieran</au><au>Paschke, Alyssia</au><au>Zerres, Julia</au><au>Denzinger, Markus</au><au>Niederberger, David</au><au>Wellmann, Sven</au><au>Ozkan, Ece</au><au>Knorr, Christian</au><au>Vogt, Julia E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2024-01</date><risdate>2024</risdate><volume>91</volume><spage>103042</spage><epage>103042</epage><pages>103042-103042</pages><artnum>103042</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset.</abstract><cop>Netherlands</cop><pmid>38000257</pmid><doi>10.1016/j.media.2023.103042</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0000-9216-6590</orcidid><orcidid>https://orcid.org/0000-0001-8901-5062</orcidid><orcidid>https://orcid.org/0000-0003-1580-0273</orcidid><orcidid>https://orcid.org/0000-0002-5479-469X</orcidid><orcidid>https://orcid.org/0000-0002-9889-6348</orcidid><orcidid>https://orcid.org/0000-0001-9230-6266</orcidid><orcidid>https://orcid.org/0000-0002-6004-7770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2024-01, Vol.91, p.103042-103042, Article 103042 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_2893839114 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Appendicitis - diagnostic imaging Child Humans Machine Learning Neural Networks, Computer Tomography, X-Ray Computed Ultrasonography - methods |
title | Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20and%20intervenable%20ultrasonography-based%20machine%20learning%20models%20for%20pediatric%20appendicitis&rft.jtitle=Medical%20image%20analysis&rft.au=Marcinkevi%C4%8Ds,%20Ri%C4%8Dards&rft.date=2024-01&rft.volume=91&rft.spage=103042&rft.epage=103042&rft.pages=103042-103042&rft.artnum=103042&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2023.103042&rft_dat=%3Cproquest_cross%3E2893839114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893839114&rft_id=info:pmid/38000257&rfr_iscdi=true |