Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis

Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread avail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2024-01, Vol.91, p.103042-103042, Article 103042
Hauptverfasser: Marcinkevičs, Ričards, Reis Wolfertstetter, Patricia, Klimiene, Ugne, Chin-Cheong, Kieran, Paschke, Alyssia, Zerres, Julia, Denzinger, Markus, Niederberger, David, Wellmann, Sven, Ozkan, Ece, Knorr, Christian, Vogt, Julia E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103042
container_issue
container_start_page 103042
container_title Medical image analysis
container_volume 91
creator Marcinkevičs, Ričards
Reis Wolfertstetter, Patricia
Klimiene, Ugne
Chin-Cheong, Kieran
Paschke, Alyssia
Zerres, Julia
Denzinger, Markus
Niederberger, David
Wellmann, Sven
Ozkan, Ece
Knorr, Christian
Vogt, Julia E
description Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset.
doi_str_mv 10.1016/j.media.2023.103042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2893839114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893839114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-96a9f42dda42b4c7a8b9ff7983f16c51500eb3ecbdbb1a2add27092754e64ac23</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EoqXwC5BQjlxSvGU7ooqlUiUucLbG9qR1lTjBTpH670lb6Gme3rxZ9BFyz-icUZY_bectWgdzTrkYHUElvyBTJnKWlpKLy7Nm2YTcxLillBZS0msyEeWoeVZMyXrpBwx9wAF0gwl4m7iD84P-aOyaIUDsfLcO0G_2qYaINmnBbJzHpEEI3vl10nYWm5jUXUj6w1NDcCaBvkdvnXGDi7fkqoYm4t1fnZGv15fPxXu6-nhbLp5XqRGUDmmVQ1VLbi1IrqUpoNRVXRdVKWqWm4xllKIWaLTVmgEHa3lBK15kEnMJhosZeTzt7UP3vcM4qNZFg00DHrtdVLysRCkqxuQYFaeoCV2MAWvVB9dC2CtG1YGw2qojYXUgrE6Ex6mHvwM7PXbPM_9IxS91z3tp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893839114</pqid></control><display><type>article</type><title>Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Marcinkevičs, Ričards ; Reis Wolfertstetter, Patricia ; Klimiene, Ugne ; Chin-Cheong, Kieran ; Paschke, Alyssia ; Zerres, Julia ; Denzinger, Markus ; Niederberger, David ; Wellmann, Sven ; Ozkan, Ece ; Knorr, Christian ; Vogt, Julia E</creator><creatorcontrib>Marcinkevičs, Ričards ; Reis Wolfertstetter, Patricia ; Klimiene, Ugne ; Chin-Cheong, Kieran ; Paschke, Alyssia ; Zerres, Julia ; Denzinger, Markus ; Niederberger, David ; Wellmann, Sven ; Ozkan, Ece ; Knorr, Christian ; Vogt, Julia E</creatorcontrib><description>Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2023.103042</identifier><identifier>PMID: 38000257</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Appendicitis - diagnostic imaging ; Child ; Humans ; Machine Learning ; Neural Networks, Computer ; Tomography, X-Ray Computed ; Ultrasonography - methods</subject><ispartof>Medical image analysis, 2024-01, Vol.91, p.103042-103042, Article 103042</ispartof><rights>Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-96a9f42dda42b4c7a8b9ff7983f16c51500eb3ecbdbb1a2add27092754e64ac23</cites><orcidid>0009-0000-9216-6590 ; 0000-0001-8901-5062 ; 0000-0003-1580-0273 ; 0000-0002-5479-469X ; 0000-0002-9889-6348 ; 0000-0001-9230-6266 ; 0000-0002-6004-7770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38000257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marcinkevičs, Ričards</creatorcontrib><creatorcontrib>Reis Wolfertstetter, Patricia</creatorcontrib><creatorcontrib>Klimiene, Ugne</creatorcontrib><creatorcontrib>Chin-Cheong, Kieran</creatorcontrib><creatorcontrib>Paschke, Alyssia</creatorcontrib><creatorcontrib>Zerres, Julia</creatorcontrib><creatorcontrib>Denzinger, Markus</creatorcontrib><creatorcontrib>Niederberger, David</creatorcontrib><creatorcontrib>Wellmann, Sven</creatorcontrib><creatorcontrib>Ozkan, Ece</creatorcontrib><creatorcontrib>Knorr, Christian</creatorcontrib><creatorcontrib>Vogt, Julia E</creatorcontrib><title>Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset.</description><subject>Appendicitis - diagnostic imaging</subject><subject>Child</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><subject>Tomography, X-Ray Computed</subject><subject>Ultrasonography - methods</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kElPwzAQhS0EoqXwC5BQjlxSvGU7ooqlUiUucLbG9qR1lTjBTpH670lb6Gme3rxZ9BFyz-icUZY_bectWgdzTrkYHUElvyBTJnKWlpKLy7Nm2YTcxLillBZS0msyEeWoeVZMyXrpBwx9wAF0gwl4m7iD84P-aOyaIUDsfLcO0G_2qYaINmnBbJzHpEEI3vl10nYWm5jUXUj6w1NDcCaBvkdvnXGDi7fkqoYm4t1fnZGv15fPxXu6-nhbLp5XqRGUDmmVQ1VLbi1IrqUpoNRVXRdVKWqWm4xllKIWaLTVmgEHa3lBK15kEnMJhosZeTzt7UP3vcM4qNZFg00DHrtdVLysRCkqxuQYFaeoCV2MAWvVB9dC2CtG1YGw2qojYXUgrE6Ex6mHvwM7PXbPM_9IxS91z3tp</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Marcinkevičs, Ričards</creator><creator>Reis Wolfertstetter, Patricia</creator><creator>Klimiene, Ugne</creator><creator>Chin-Cheong, Kieran</creator><creator>Paschke, Alyssia</creator><creator>Zerres, Julia</creator><creator>Denzinger, Markus</creator><creator>Niederberger, David</creator><creator>Wellmann, Sven</creator><creator>Ozkan, Ece</creator><creator>Knorr, Christian</creator><creator>Vogt, Julia E</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-9216-6590</orcidid><orcidid>https://orcid.org/0000-0001-8901-5062</orcidid><orcidid>https://orcid.org/0000-0003-1580-0273</orcidid><orcidid>https://orcid.org/0000-0002-5479-469X</orcidid><orcidid>https://orcid.org/0000-0002-9889-6348</orcidid><orcidid>https://orcid.org/0000-0001-9230-6266</orcidid><orcidid>https://orcid.org/0000-0002-6004-7770</orcidid></search><sort><creationdate>202401</creationdate><title>Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis</title><author>Marcinkevičs, Ričards ; Reis Wolfertstetter, Patricia ; Klimiene, Ugne ; Chin-Cheong, Kieran ; Paschke, Alyssia ; Zerres, Julia ; Denzinger, Markus ; Niederberger, David ; Wellmann, Sven ; Ozkan, Ece ; Knorr, Christian ; Vogt, Julia E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-96a9f42dda42b4c7a8b9ff7983f16c51500eb3ecbdbb1a2add27092754e64ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Appendicitis - diagnostic imaging</topic><topic>Child</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><topic>Tomography, X-Ray Computed</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcinkevičs, Ričards</creatorcontrib><creatorcontrib>Reis Wolfertstetter, Patricia</creatorcontrib><creatorcontrib>Klimiene, Ugne</creatorcontrib><creatorcontrib>Chin-Cheong, Kieran</creatorcontrib><creatorcontrib>Paschke, Alyssia</creatorcontrib><creatorcontrib>Zerres, Julia</creatorcontrib><creatorcontrib>Denzinger, Markus</creatorcontrib><creatorcontrib>Niederberger, David</creatorcontrib><creatorcontrib>Wellmann, Sven</creatorcontrib><creatorcontrib>Ozkan, Ece</creatorcontrib><creatorcontrib>Knorr, Christian</creatorcontrib><creatorcontrib>Vogt, Julia E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcinkevičs, Ričards</au><au>Reis Wolfertstetter, Patricia</au><au>Klimiene, Ugne</au><au>Chin-Cheong, Kieran</au><au>Paschke, Alyssia</au><au>Zerres, Julia</au><au>Denzinger, Markus</au><au>Niederberger, David</au><au>Wellmann, Sven</au><au>Ozkan, Ece</au><au>Knorr, Christian</au><au>Vogt, Julia E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2024-01</date><risdate>2024</risdate><volume>91</volume><spage>103042</spage><epage>103042</epage><pages>103042-103042</pages><artnum>103042</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset.</abstract><cop>Netherlands</cop><pmid>38000257</pmid><doi>10.1016/j.media.2023.103042</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0000-9216-6590</orcidid><orcidid>https://orcid.org/0000-0001-8901-5062</orcidid><orcidid>https://orcid.org/0000-0003-1580-0273</orcidid><orcidid>https://orcid.org/0000-0002-5479-469X</orcidid><orcidid>https://orcid.org/0000-0002-9889-6348</orcidid><orcidid>https://orcid.org/0000-0001-9230-6266</orcidid><orcidid>https://orcid.org/0000-0002-6004-7770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2024-01, Vol.91, p.103042-103042, Article 103042
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_2893839114
source MEDLINE; Elsevier ScienceDirect Journals
subjects Appendicitis - diagnostic imaging
Child
Humans
Machine Learning
Neural Networks, Computer
Tomography, X-Ray Computed
Ultrasonography - methods
title Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20and%20intervenable%20ultrasonography-based%20machine%20learning%20models%20for%20pediatric%20appendicitis&rft.jtitle=Medical%20image%20analysis&rft.au=Marcinkevi%C4%8Ds,%20Ri%C4%8Dards&rft.date=2024-01&rft.volume=91&rft.spage=103042&rft.epage=103042&rft.pages=103042-103042&rft.artnum=103042&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2023.103042&rft_dat=%3Cproquest_cross%3E2893839114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893839114&rft_id=info:pmid/38000257&rfr_iscdi=true