Tunable electronic band structure and magnetic anisotropy in two-dimensional Dirac half-metal MnBr3 by external stimulus: strain, magnetization direction, and interlayer coupling

Advancing technology and growing interdisciplinary fields create the need for new materials that simultaneously possess several significant physics qualities to meet human demands. Dirac half-metals with massless fermions hold great promise in spintronic devices and optoelectronic devices associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-12, Vol.25 (47), p.32515-32524
Hauptverfasser: Xie, Fangyuan, Yin, Zhengyu, Zhou, Baozeng, Ding, Yanhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32524
container_issue 47
container_start_page 32515
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Xie, Fangyuan
Yin, Zhengyu
Zhou, Baozeng
Ding, Yanhong
description Advancing technology and growing interdisciplinary fields create the need for new materials that simultaneously possess several significant physics qualities to meet human demands. Dirac half-metals with massless fermions hold great promise in spintronic devices and optoelectronic devices associated with nontrivial band topologies. In this work, we predict that a MnBr3 monolayer will be an intrinsic Dirac half-metal based on first-principles calculations. The lattice dynamics and thermodynamic stabilities were demonstrated by calculating the phonon spectra and performing molecular dynamics simulations. One property of a MnBr3 monolayer is that facile magnetization of its in-plane can be accomplished. A change in the magnetization direction significantly modifies the electronic band structure. When considering the spin–orbit coupling effect, the Dirac cone around the Fermi level in the spin-up channel opens a gap of 35 meV, which becomes a topological nontrivial insulator with a Chern number of −1. The Chern number sign and the chiral edge current can be tuned by changing the magnetization direction. The electronic band structure and magnetic anisotropy energy can be further modulated by applying biaxial and uniaxial strain, as well as introducing interlayer coupling in the bilayer. The unique performance of MnBr3 will broaden the utilization of two-dimensional magnetism in widespread application.
doi_str_mv 10.1039/d3cp04321e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2893834442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898342037</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-e13e031b4b52635b3bc2511c511ac0e4a83711bb8d891805a24dc003d823a46a3</originalsourceid><addsrcrecordid>eNpdj0tPHDEMx0eISjzKhU8QiUsPOzSJM7Oz3NqFUiRQL3BGTsa7BGUyQx5ql4_VT9jslvbAwfLr57_tqjoV_FxwWHzuwUxcgRS0Vx0K1UK94J3a_x_P24PqKMZnzrloBBxWv--zR-2IkSOTwuitYRp9z2IK2aQciG2zAdeeUumht3Es3LRh1rP0c6x7O5CPdvTo2KUNaNgTulU9UCqFO_81ANMbRr8ShS0Skx2yy_FiuwGtn_3TfsVURFhvQzmkRLPdYuvLnMMNBWbGPDnr1x-rDyt0kU7e_HH18O3qfvm9vv1xfbP8cltPUrSpJgHEQWilG9lCo0Eb2QhhiqHhpLCDuRBad323EB1vUKrecA59JwFVi3BcffqrO4XxJVNMj4ONhpxDT2OOj7JbQAdKKVnQs3fo85i37-6oAkkOc_gD03WDDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898342037</pqid></control><display><type>article</type><title>Tunable electronic band structure and magnetic anisotropy in two-dimensional Dirac half-metal MnBr3 by external stimulus: strain, magnetization direction, and interlayer coupling</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xie, Fangyuan ; Yin, Zhengyu ; Zhou, Baozeng ; Ding, Yanhong</creator><creatorcontrib>Xie, Fangyuan ; Yin, Zhengyu ; Zhou, Baozeng ; Ding, Yanhong</creatorcontrib><description>Advancing technology and growing interdisciplinary fields create the need for new materials that simultaneously possess several significant physics qualities to meet human demands. Dirac half-metals with massless fermions hold great promise in spintronic devices and optoelectronic devices associated with nontrivial band topologies. In this work, we predict that a MnBr3 monolayer will be an intrinsic Dirac half-metal based on first-principles calculations. The lattice dynamics and thermodynamic stabilities were demonstrated by calculating the phonon spectra and performing molecular dynamics simulations. One property of a MnBr3 monolayer is that facile magnetization of its in-plane can be accomplished. A change in the magnetization direction significantly modifies the electronic band structure. When considering the spin–orbit coupling effect, the Dirac cone around the Fermi level in the spin-up channel opens a gap of 35 meV, which becomes a topological nontrivial insulator with a Chern number of −1. The Chern number sign and the chiral edge current can be tuned by changing the magnetization direction. The electronic band structure and magnetic anisotropy energy can be further modulated by applying biaxial and uniaxial strain, as well as introducing interlayer coupling in the bilayer. The unique performance of MnBr3 will broaden the utilization of two-dimensional magnetism in widespread application.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp04321e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Band structure of solids ; Bilayers ; Electrons ; Fermions ; First principles ; Interlayers ; Magnetic anisotropy ; Magnetic properties ; Magnetization ; Mathematical analysis ; Molecular dynamics ; Monolayers ; Optoelectronic devices ; Spin-orbit interactions ; Topology</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-12, Vol.25 (47), p.32515-32524</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xie, Fangyuan</creatorcontrib><creatorcontrib>Yin, Zhengyu</creatorcontrib><creatorcontrib>Zhou, Baozeng</creatorcontrib><creatorcontrib>Ding, Yanhong</creatorcontrib><title>Tunable electronic band structure and magnetic anisotropy in two-dimensional Dirac half-metal MnBr3 by external stimulus: strain, magnetization direction, and interlayer coupling</title><title>Physical chemistry chemical physics : PCCP</title><description>Advancing technology and growing interdisciplinary fields create the need for new materials that simultaneously possess several significant physics qualities to meet human demands. Dirac half-metals with massless fermions hold great promise in spintronic devices and optoelectronic devices associated with nontrivial band topologies. In this work, we predict that a MnBr3 monolayer will be an intrinsic Dirac half-metal based on first-principles calculations. The lattice dynamics and thermodynamic stabilities were demonstrated by calculating the phonon spectra and performing molecular dynamics simulations. One property of a MnBr3 monolayer is that facile magnetization of its in-plane can be accomplished. A change in the magnetization direction significantly modifies the electronic band structure. When considering the spin–orbit coupling effect, the Dirac cone around the Fermi level in the spin-up channel opens a gap of 35 meV, which becomes a topological nontrivial insulator with a Chern number of −1. The Chern number sign and the chiral edge current can be tuned by changing the magnetization direction. The electronic band structure and magnetic anisotropy energy can be further modulated by applying biaxial and uniaxial strain, as well as introducing interlayer coupling in the bilayer. The unique performance of MnBr3 will broaden the utilization of two-dimensional magnetism in widespread application.</description><subject>Band structure of solids</subject><subject>Bilayers</subject><subject>Electrons</subject><subject>Fermions</subject><subject>First principles</subject><subject>Interlayers</subject><subject>Magnetic anisotropy</subject><subject>Magnetic properties</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Monolayers</subject><subject>Optoelectronic devices</subject><subject>Spin-orbit interactions</subject><subject>Topology</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdj0tPHDEMx0eISjzKhU8QiUsPOzSJM7Oz3NqFUiRQL3BGTsa7BGUyQx5ql4_VT9jslvbAwfLr57_tqjoV_FxwWHzuwUxcgRS0Vx0K1UK94J3a_x_P24PqKMZnzrloBBxWv--zR-2IkSOTwuitYRp9z2IK2aQciG2zAdeeUumht3Es3LRh1rP0c6x7O5CPdvTo2KUNaNgTulU9UCqFO_81ANMbRr8ShS0Skx2yy_FiuwGtn_3TfsVURFhvQzmkRLPdYuvLnMMNBWbGPDnr1x-rDyt0kU7e_HH18O3qfvm9vv1xfbP8cltPUrSpJgHEQWilG9lCo0Eb2QhhiqHhpLCDuRBad323EB1vUKrecA59JwFVi3BcffqrO4XxJVNMj4ONhpxDT2OOj7JbQAdKKVnQs3fo85i37-6oAkkOc_gD03WDDw</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>Xie, Fangyuan</creator><creator>Yin, Zhengyu</creator><creator>Zhou, Baozeng</creator><creator>Ding, Yanhong</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20231206</creationdate><title>Tunable electronic band structure and magnetic anisotropy in two-dimensional Dirac half-metal MnBr3 by external stimulus: strain, magnetization direction, and interlayer coupling</title><author>Xie, Fangyuan ; Yin, Zhengyu ; Zhou, Baozeng ; Ding, Yanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-e13e031b4b52635b3bc2511c511ac0e4a83711bb8d891805a24dc003d823a46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Band structure of solids</topic><topic>Bilayers</topic><topic>Electrons</topic><topic>Fermions</topic><topic>First principles</topic><topic>Interlayers</topic><topic>Magnetic anisotropy</topic><topic>Magnetic properties</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Monolayers</topic><topic>Optoelectronic devices</topic><topic>Spin-orbit interactions</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Fangyuan</creatorcontrib><creatorcontrib>Yin, Zhengyu</creatorcontrib><creatorcontrib>Zhou, Baozeng</creatorcontrib><creatorcontrib>Ding, Yanhong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Fangyuan</au><au>Yin, Zhengyu</au><au>Zhou, Baozeng</au><au>Ding, Yanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable electronic band structure and magnetic anisotropy in two-dimensional Dirac half-metal MnBr3 by external stimulus: strain, magnetization direction, and interlayer coupling</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-12-06</date><risdate>2023</risdate><volume>25</volume><issue>47</issue><spage>32515</spage><epage>32524</epage><pages>32515-32524</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Advancing technology and growing interdisciplinary fields create the need for new materials that simultaneously possess several significant physics qualities to meet human demands. Dirac half-metals with massless fermions hold great promise in spintronic devices and optoelectronic devices associated with nontrivial band topologies. In this work, we predict that a MnBr3 monolayer will be an intrinsic Dirac half-metal based on first-principles calculations. The lattice dynamics and thermodynamic stabilities were demonstrated by calculating the phonon spectra and performing molecular dynamics simulations. One property of a MnBr3 monolayer is that facile magnetization of its in-plane can be accomplished. A change in the magnetization direction significantly modifies the electronic band structure. When considering the spin–orbit coupling effect, the Dirac cone around the Fermi level in the spin-up channel opens a gap of 35 meV, which becomes a topological nontrivial insulator with a Chern number of −1. The Chern number sign and the chiral edge current can be tuned by changing the magnetization direction. The electronic band structure and magnetic anisotropy energy can be further modulated by applying biaxial and uniaxial strain, as well as introducing interlayer coupling in the bilayer. The unique performance of MnBr3 will broaden the utilization of two-dimensional magnetism in widespread application.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp04321e</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-12, Vol.25 (47), p.32515-32524
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2893834442
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Band structure of solids
Bilayers
Electrons
Fermions
First principles
Interlayers
Magnetic anisotropy
Magnetic properties
Magnetization
Mathematical analysis
Molecular dynamics
Monolayers
Optoelectronic devices
Spin-orbit interactions
Topology
title Tunable electronic band structure and magnetic anisotropy in two-dimensional Dirac half-metal MnBr3 by external stimulus: strain, magnetization direction, and interlayer coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20electronic%20band%20structure%20and%20magnetic%20anisotropy%20in%20two-dimensional%20Dirac%20half-metal%20MnBr3%20by%20external%20stimulus:%20strain,%20magnetization%20direction,%20and%20interlayer%20coupling&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Xie,%20Fangyuan&rft.date=2023-12-06&rft.volume=25&rft.issue=47&rft.spage=32515&rft.epage=32524&rft.pages=32515-32524&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp04321e&rft_dat=%3Cproquest%3E2898342037%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898342037&rft_id=info:pmid/&rfr_iscdi=true