A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath

A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Plasma Science 1993-12, Vol.21 (6), p.768-777
Hauptverfasser: Meeks, E., Cappelli, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 6
container_start_page 768
container_title IEEE Transactions on Plasma Science
container_volume 21
creator Meeks, E.
Cappelli, M.A.
description A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for the electric field in a generalized formulation. Application of the model to argon flow reveals important interactions between thermal, hydrodynamic, chemical and electrical boundary layers, with implications for current-limiting regimes of arcjet operation. The response of a planar Langmuir probe in contact with a collisional, flowing plasma is examined. Determinations of current-voltage behavior compare well with simple theory, including dependence on incident plasma velocity. Departures from this theory arise from boundary-layer perturbations near the electrode surface, away from free-stream conditions. The computational model incorporates a finite-rate catalytic recombination of ions and electrons at the electrode surface together with a specified current.< >
doi_str_mv 10.1109/27.256798
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28933718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>256798</ieee_id><sourcerecordid>28379091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b71ff1b7c803309d5d5d936a44af592cddccaaa1a2c085855fa51b6dbd2c2ad33</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJoNtND732pEAJ9OBEH5ZtHUNIPyDQS3MWs2MpVpGtjUdL6L-PEy85hznMMPPMy8sMY1-kuJRS2CvVXirTtLb7wDbSaltZ3ZoTthHC6kp3Un9kn4j-CSFrI9SG4TUfD6nEKqRD7DkVeJigxDwtjfzE9wloBD7m3if-FMvAyadQYZ4oUvFT4WX2UMaXKgdeBs8xpxRpUYDEaViGwxk7DZDIfz7mLbv_cfv35ld19-fn75vruwp1o0u1a2UIctdiJ7QWtjdLWN1AXUMwVmHfIwKABIWiM50xAYzcNf2uV6ig13rLzlfdTCU6wlg8DovVyWNxslb1cpAtu1iZ_ZwfD56KGyOhTwkmnw_kVGe1bmX3DlC3Vli5gN9XEOdMNPvg9nMcYf7vpHAvP3GqdetPFvbbURQIIYUZJoz0tqA724hXk19XLHrv36ZHjWd_SpUB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28379091</pqid></control><display><type>article</type><title>A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath</title><source>IEEE Electronic Library (IEL)</source><creator>Meeks, E. ; Cappelli, M.A.</creator><creatorcontrib>Meeks, E. ; Cappelli, M.A.</creatorcontrib><description>A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for the electric field in a generalized formulation. Application of the model to argon flow reveals important interactions between thermal, hydrodynamic, chemical and electrical boundary layers, with implications for current-limiting regimes of arcjet operation. The response of a planar Langmuir probe in contact with a collisional, flowing plasma is examined. Determinations of current-voltage behavior compare well with simple theory, including dependence on incident plasma velocity. Departures from this theory arise from boundary-layer perturbations near the electrode surface, away from free-stream conditions. The computational model incorporates a finite-rate catalytic recombination of ions and electrons at the electrode surface together with a specified current.&lt; &gt;</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/27.256798</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Argon ; Chemicals ; COLLISIONAL PLASMA ; Electric and magnetic measurements ; Electrodes ; ELECTRON EMISSION ; Electrons ; Exact sciences and technology ; FLOW MODELS ; Hydrodynamics ; Ionization ; PHYSICS ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma chemistry ; Plasma diagnostic techniques and instrumentation ; PLASMA DIAGNOSTICS ; Plasma interactions (nonlaser) ; PLASMA SHEATH ; PLASMA SIMULATION ; Plasma-wall interactions; boundary layer effects ; Plasma-wall interactions; boundary layer effects; plasma sheaths ; Poisson equations ; Probes ; THEORETICAL DATA</subject><ispartof>IEEE Transactions on Plasma Science, 1993-12, Vol.21 (6), p.768-777</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b71ff1b7c803309d5d5d936a44af592cddccaaa1a2c085855fa51b6dbd2c2ad33</citedby><cites>FETCH-LOGICAL-c363t-b71ff1b7c803309d5d5d936a44af592cddccaaa1a2c085855fa51b6dbd2c2ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/256798$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/256798$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3896019$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/142419$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Meeks, E.</creatorcontrib><creatorcontrib>Cappelli, M.A.</creatorcontrib><title>A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath</title><title>IEEE Transactions on Plasma Science</title><addtitle>TPS</addtitle><description>A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for the electric field in a generalized formulation. Application of the model to argon flow reveals important interactions between thermal, hydrodynamic, chemical and electrical boundary layers, with implications for current-limiting regimes of arcjet operation. The response of a planar Langmuir probe in contact with a collisional, flowing plasma is examined. Determinations of current-voltage behavior compare well with simple theory, including dependence on incident plasma velocity. Departures from this theory arise from boundary-layer perturbations near the electrode surface, away from free-stream conditions. The computational model incorporates a finite-rate catalytic recombination of ions and electrons at the electrode surface together with a specified current.&lt; &gt;</description><subject>Argon</subject><subject>Chemicals</subject><subject>COLLISIONAL PLASMA</subject><subject>Electric and magnetic measurements</subject><subject>Electrodes</subject><subject>ELECTRON EMISSION</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>FLOW MODELS</subject><subject>Hydrodynamics</subject><subject>Ionization</subject><subject>PHYSICS</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma chemistry</subject><subject>Plasma diagnostic techniques and instrumentation</subject><subject>PLASMA DIAGNOSTICS</subject><subject>Plasma interactions (nonlaser)</subject><subject>PLASMA SHEATH</subject><subject>PLASMA SIMULATION</subject><subject>Plasma-wall interactions; boundary layer effects</subject><subject>Plasma-wall interactions; boundary layer effects; plasma sheaths</subject><subject>Poisson equations</subject><subject>Probes</subject><subject>THEORETICAL DATA</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNkU1r3DAQhkVJoNtND732pEAJ9OBEH5ZtHUNIPyDQS3MWs2MpVpGtjUdL6L-PEy85hznMMPPMy8sMY1-kuJRS2CvVXirTtLb7wDbSaltZ3ZoTthHC6kp3Un9kn4j-CSFrI9SG4TUfD6nEKqRD7DkVeJigxDwtjfzE9wloBD7m3if-FMvAyadQYZ4oUvFT4WX2UMaXKgdeBs8xpxRpUYDEaViGwxk7DZDIfz7mLbv_cfv35ld19-fn75vruwp1o0u1a2UIctdiJ7QWtjdLWN1AXUMwVmHfIwKABIWiM50xAYzcNf2uV6ig13rLzlfdTCU6wlg8DovVyWNxslb1cpAtu1iZ_ZwfD56KGyOhTwkmnw_kVGe1bmX3DlC3Vli5gN9XEOdMNPvg9nMcYf7vpHAvP3GqdetPFvbbURQIIYUZJoz0tqA724hXk19XLHrv36ZHjWd_SpUB</recordid><startdate>19931201</startdate><enddate>19931201</enddate><creator>Meeks, E.</creator><creator>Cappelli, M.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>19931201</creationdate><title>A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath</title><author>Meeks, E. ; Cappelli, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b71ff1b7c803309d5d5d936a44af592cddccaaa1a2c085855fa51b6dbd2c2ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Argon</topic><topic>Chemicals</topic><topic>COLLISIONAL PLASMA</topic><topic>Electric and magnetic measurements</topic><topic>Electrodes</topic><topic>ELECTRON EMISSION</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>FLOW MODELS</topic><topic>Hydrodynamics</topic><topic>Ionization</topic><topic>PHYSICS</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma chemistry</topic><topic>Plasma diagnostic techniques and instrumentation</topic><topic>PLASMA DIAGNOSTICS</topic><topic>Plasma interactions (nonlaser)</topic><topic>PLASMA SHEATH</topic><topic>PLASMA SIMULATION</topic><topic>Plasma-wall interactions; boundary layer effects</topic><topic>Plasma-wall interactions; boundary layer effects; plasma sheaths</topic><topic>Poisson equations</topic><topic>Probes</topic><topic>THEORETICAL DATA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeks, E.</creatorcontrib><creatorcontrib>Cappelli, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Plasma Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meeks, E.</au><au>Cappelli, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath</atitle><jtitle>IEEE Transactions on Plasma Science</jtitle><stitle>TPS</stitle><date>1993-12-01</date><risdate>1993</risdate><volume>21</volume><issue>6</issue><spage>768</spage><epage>777</epage><pages>768-777</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for the electric field in a generalized formulation. Application of the model to argon flow reveals important interactions between thermal, hydrodynamic, chemical and electrical boundary layers, with implications for current-limiting regimes of arcjet operation. The response of a planar Langmuir probe in contact with a collisional, flowing plasma is examined. Determinations of current-voltage behavior compare well with simple theory, including dependence on incident plasma velocity. Departures from this theory arise from boundary-layer perturbations near the electrode surface, away from free-stream conditions. The computational model incorporates a finite-rate catalytic recombination of ions and electrons at the electrode surface together with a specified current.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/27.256798</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE Transactions on Plasma Science, 1993-12, Vol.21 (6), p.768-777
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_miscellaneous_28933718
source IEEE Electronic Library (IEL)
subjects Argon
Chemicals
COLLISIONAL PLASMA
Electric and magnetic measurements
Electrodes
ELECTRON EMISSION
Electrons
Exact sciences and technology
FLOW MODELS
Hydrodynamics
Ionization
PHYSICS
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma applications
Plasma chemistry
Plasma diagnostic techniques and instrumentation
PLASMA DIAGNOSTICS
Plasma interactions (nonlaser)
PLASMA SHEATH
PLASMA SIMULATION
Plasma-wall interactions
boundary layer effects
Plasma-wall interactions
boundary layer effects
plasma sheaths
Poisson equations
Probes
THEORETICAL DATA
title A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-fluid%20stagnation-flow%20plasma%20model%20with%20self-consistent%20treatment%20of%20the%20collisional%20sheath&rft.jtitle=IEEE%20Transactions%20on%20Plasma%20Science&rft.au=Meeks,%20E.&rft.date=1993-12-01&rft.volume=21&rft.issue=6&rft.spage=768&rft.epage=777&rft.pages=768-777&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/27.256798&rft_dat=%3Cproquest_RIE%3E28379091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28379091&rft_id=info:pmid/&rft_ieee_id=256798&rfr_iscdi=true