A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath
A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for th...
Gespeichert in:
Veröffentlicht in: | IEEE Transactions on Plasma Science 1993-12, Vol.21 (6), p.768-777 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 777 |
---|---|
container_issue | 6 |
container_start_page | 768 |
container_title | IEEE Transactions on Plasma Science |
container_volume | 21 |
creator | Meeks, E. Cappelli, M.A. |
description | A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for the electric field in a generalized formulation. Application of the model to argon flow reveals important interactions between thermal, hydrodynamic, chemical and electrical boundary layers, with implications for current-limiting regimes of arcjet operation. The response of a planar Langmuir probe in contact with a collisional, flowing plasma is examined. Determinations of current-voltage behavior compare well with simple theory, including dependence on incident plasma velocity. Departures from this theory arise from boundary-layer perturbations near the electrode surface, away from free-stream conditions. The computational model incorporates a finite-rate catalytic recombination of ions and electrons at the electrode surface together with a specified current.< > |
doi_str_mv | 10.1109/27.256798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28933718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>256798</ieee_id><sourcerecordid>28379091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b71ff1b7c803309d5d5d936a44af592cddccaaa1a2c085855fa51b6dbd2c2ad33</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJoNtND732pEAJ9OBEH5ZtHUNIPyDQS3MWs2MpVpGtjUdL6L-PEy85hznMMPPMy8sMY1-kuJRS2CvVXirTtLb7wDbSaltZ3ZoTthHC6kp3Un9kn4j-CSFrI9SG4TUfD6nEKqRD7DkVeJigxDwtjfzE9wloBD7m3if-FMvAyadQYZ4oUvFT4WX2UMaXKgdeBs8xpxRpUYDEaViGwxk7DZDIfz7mLbv_cfv35ld19-fn75vruwp1o0u1a2UIctdiJ7QWtjdLWN1AXUMwVmHfIwKABIWiM50xAYzcNf2uV6ig13rLzlfdTCU6wlg8DovVyWNxslb1cpAtu1iZ_ZwfD56KGyOhTwkmnw_kVGe1bmX3DlC3Vli5gN9XEOdMNPvg9nMcYf7vpHAvP3GqdetPFvbbURQIIYUZJoz0tqA724hXk19XLHrv36ZHjWd_SpUB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28379091</pqid></control><display><type>article</type><title>A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath</title><source>IEEE Electronic Library (IEL)</source><creator>Meeks, E. ; Cappelli, M.A.</creator><creatorcontrib>Meeks, E. ; Cappelli, M.A.</creatorcontrib><description>A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for the electric field in a generalized formulation. Application of the model to argon flow reveals important interactions between thermal, hydrodynamic, chemical and electrical boundary layers, with implications for current-limiting regimes of arcjet operation. The response of a planar Langmuir probe in contact with a collisional, flowing plasma is examined. Determinations of current-voltage behavior compare well with simple theory, including dependence on incident plasma velocity. Departures from this theory arise from boundary-layer perturbations near the electrode surface, away from free-stream conditions. The computational model incorporates a finite-rate catalytic recombination of ions and electrons at the electrode surface together with a specified current.< ></description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/27.256798</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Argon ; Chemicals ; COLLISIONAL PLASMA ; Electric and magnetic measurements ; Electrodes ; ELECTRON EMISSION ; Electrons ; Exact sciences and technology ; FLOW MODELS ; Hydrodynamics ; Ionization ; PHYSICS ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma chemistry ; Plasma diagnostic techniques and instrumentation ; PLASMA DIAGNOSTICS ; Plasma interactions (nonlaser) ; PLASMA SHEATH ; PLASMA SIMULATION ; Plasma-wall interactions; boundary layer effects ; Plasma-wall interactions; boundary layer effects; plasma sheaths ; Poisson equations ; Probes ; THEORETICAL DATA</subject><ispartof>IEEE Transactions on Plasma Science, 1993-12, Vol.21 (6), p.768-777</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b71ff1b7c803309d5d5d936a44af592cddccaaa1a2c085855fa51b6dbd2c2ad33</citedby><cites>FETCH-LOGICAL-c363t-b71ff1b7c803309d5d5d936a44af592cddccaaa1a2c085855fa51b6dbd2c2ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/256798$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/256798$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3896019$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/142419$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Meeks, E.</creatorcontrib><creatorcontrib>Cappelli, M.A.</creatorcontrib><title>A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath</title><title>IEEE Transactions on Plasma Science</title><addtitle>TPS</addtitle><description>A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for the electric field in a generalized formulation. Application of the model to argon flow reveals important interactions between thermal, hydrodynamic, chemical and electrical boundary layers, with implications for current-limiting regimes of arcjet operation. The response of a planar Langmuir probe in contact with a collisional, flowing plasma is examined. Determinations of current-voltage behavior compare well with simple theory, including dependence on incident plasma velocity. Departures from this theory arise from boundary-layer perturbations near the electrode surface, away from free-stream conditions. The computational model incorporates a finite-rate catalytic recombination of ions and electrons at the electrode surface together with a specified current.< ></description><subject>Argon</subject><subject>Chemicals</subject><subject>COLLISIONAL PLASMA</subject><subject>Electric and magnetic measurements</subject><subject>Electrodes</subject><subject>ELECTRON EMISSION</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>FLOW MODELS</subject><subject>Hydrodynamics</subject><subject>Ionization</subject><subject>PHYSICS</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma chemistry</subject><subject>Plasma diagnostic techniques and instrumentation</subject><subject>PLASMA DIAGNOSTICS</subject><subject>Plasma interactions (nonlaser)</subject><subject>PLASMA SHEATH</subject><subject>PLASMA SIMULATION</subject><subject>Plasma-wall interactions; boundary layer effects</subject><subject>Plasma-wall interactions; boundary layer effects; plasma sheaths</subject><subject>Poisson equations</subject><subject>Probes</subject><subject>THEORETICAL DATA</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNkU1r3DAQhkVJoNtND732pEAJ9OBEH5ZtHUNIPyDQS3MWs2MpVpGtjUdL6L-PEy85hznMMPPMy8sMY1-kuJRS2CvVXirTtLb7wDbSaltZ3ZoTthHC6kp3Un9kn4j-CSFrI9SG4TUfD6nEKqRD7DkVeJigxDwtjfzE9wloBD7m3if-FMvAyadQYZ4oUvFT4WX2UMaXKgdeBs8xpxRpUYDEaViGwxk7DZDIfz7mLbv_cfv35ld19-fn75vruwp1o0u1a2UIctdiJ7QWtjdLWN1AXUMwVmHfIwKABIWiM50xAYzcNf2uV6ig13rLzlfdTCU6wlg8DovVyWNxslb1cpAtu1iZ_ZwfD56KGyOhTwkmnw_kVGe1bmX3DlC3Vli5gN9XEOdMNPvg9nMcYf7vpHAvP3GqdetPFvbbURQIIYUZJoz0tqA724hXk19XLHrv36ZHjWd_SpUB</recordid><startdate>19931201</startdate><enddate>19931201</enddate><creator>Meeks, E.</creator><creator>Cappelli, M.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>19931201</creationdate><title>A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath</title><author>Meeks, E. ; Cappelli, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b71ff1b7c803309d5d5d936a44af592cddccaaa1a2c085855fa51b6dbd2c2ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Argon</topic><topic>Chemicals</topic><topic>COLLISIONAL PLASMA</topic><topic>Electric and magnetic measurements</topic><topic>Electrodes</topic><topic>ELECTRON EMISSION</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>FLOW MODELS</topic><topic>Hydrodynamics</topic><topic>Ionization</topic><topic>PHYSICS</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma chemistry</topic><topic>Plasma diagnostic techniques and instrumentation</topic><topic>PLASMA DIAGNOSTICS</topic><topic>Plasma interactions (nonlaser)</topic><topic>PLASMA SHEATH</topic><topic>PLASMA SIMULATION</topic><topic>Plasma-wall interactions; boundary layer effects</topic><topic>Plasma-wall interactions; boundary layer effects; plasma sheaths</topic><topic>Poisson equations</topic><topic>Probes</topic><topic>THEORETICAL DATA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeks, E.</creatorcontrib><creatorcontrib>Cappelli, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Plasma Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meeks, E.</au><au>Cappelli, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath</atitle><jtitle>IEEE Transactions on Plasma Science</jtitle><stitle>TPS</stitle><date>1993-12-01</date><risdate>1993</risdate><volume>21</volume><issue>6</issue><spage>768</spage><epage>777</epage><pages>768-777</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>A two-temperature, multifluid model of a plasma in stagnation flow against a cooled, electrically biased surface is presented. The model couples bulk fluid motion, species diffusion and convection, electron and bulk energy equations, and net finite-rate ionization with Poisson's equation for the electric field in a generalized formulation. Application of the model to argon flow reveals important interactions between thermal, hydrodynamic, chemical and electrical boundary layers, with implications for current-limiting regimes of arcjet operation. The response of a planar Langmuir probe in contact with a collisional, flowing plasma is examined. Determinations of current-voltage behavior compare well with simple theory, including dependence on incident plasma velocity. Departures from this theory arise from boundary-layer perturbations near the electrode surface, away from free-stream conditions. The computational model incorporates a finite-rate catalytic recombination of ions and electrons at the electrode surface together with a specified current.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/27.256798</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE Transactions on Plasma Science, 1993-12, Vol.21 (6), p.768-777 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_miscellaneous_28933718 |
source | IEEE Electronic Library (IEL) |
subjects | Argon Chemicals COLLISIONAL PLASMA Electric and magnetic measurements Electrodes ELECTRON EMISSION Electrons Exact sciences and technology FLOW MODELS Hydrodynamics Ionization PHYSICS Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma applications Plasma chemistry Plasma diagnostic techniques and instrumentation PLASMA DIAGNOSTICS Plasma interactions (nonlaser) PLASMA SHEATH PLASMA SIMULATION Plasma-wall interactions boundary layer effects Plasma-wall interactions boundary layer effects plasma sheaths Poisson equations Probes THEORETICAL DATA |
title | A multi-fluid stagnation-flow plasma model with self-consistent treatment of the collisional sheath |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-fluid%20stagnation-flow%20plasma%20model%20with%20self-consistent%20treatment%20of%20the%20collisional%20sheath&rft.jtitle=IEEE%20Transactions%20on%20Plasma%20Science&rft.au=Meeks,%20E.&rft.date=1993-12-01&rft.volume=21&rft.issue=6&rft.spage=768&rft.epage=777&rft.pages=768-777&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/27.256798&rft_dat=%3Cproquest_RIE%3E28379091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28379091&rft_id=info:pmid/&rft_ieee_id=256798&rfr_iscdi=true |