Finding minimum-cost circulations by canceling negative cycles

A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and canceling it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 1989-10, Vol.36 (4), p.873-886
Hauptverfasser: GOLDBERG, A. V, TARJAN, R. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 886
container_issue 4
container_start_page 873
container_title Journal of the ACM
container_volume 36
creator GOLDBERG, A. V
TARJAN, R. E
description A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and canceling it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number of iterations in this algorithm. This gives a very simple strongly polynomial algorithm that uses no scaling. A variant of the algorithm that uses dynamic trees runs in Ο( nm (log n )min{log( nC ), m log n }) time on a network of n vertices, m arcs, and arc costs of maximum absolute value C . This bound is comparable to those of the fastest previously known algorithms.
doi_str_mv 10.1145/76359.76368
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28932796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808075830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-67b35f24910ce1449bec67b6c415bfb9e4ee9708f29a852403ab3dabea9bb1a93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsn_8AeRATZmmy-L4IUq0LBi4K3kKSzJbIfNdkV-u9Na_HoZYZ5eWYYHoQuCZ4RwvidFJTrWa5CHaEJ4VyWkvKPYzTBGLOSM0JO0VlKn3nEFZYTdL8I3Sp066INXWjHtvR9Ggofoh8bO4S-S4XbFt52Hpod1sE6x99Q-K1vIJ2jk9o2CS4OfYreF49v8-dy-fr0Mn9Ylp5qPJRCOsrrimmCPRDGtAOfM-EZ4a52GhiAlljVlbaKVwxT6-jKOrDaOWI1naLr37ub2H-NkAbThpRfamwH_ZhMpTStpBYZvPkXJAorLLmiOKO3v6iPfUoRarOJobVxawg2O51mr9PsdWb66nDYJm-bOmYlIf2tCCGU4IL-AJ5Uc-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808075830</pqid></control><display><type>article</type><title>Finding minimum-cost circulations by canceling negative cycles</title><source>ACM Digital Library</source><creator>GOLDBERG, A. V ; TARJAN, R. E</creator><creatorcontrib>GOLDBERG, A. V ; TARJAN, R. E</creatorcontrib><description>A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and canceling it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number of iterations in this algorithm. This gives a very simple strongly polynomial algorithm that uses no scaling. A variant of the algorithm that uses dynamic trees runs in Ο( nm (log n )min{log( nC ), m log n }) time on a network of n vertices, m arcs, and arc costs of maximum absolute value C . This bound is comparable to those of the fastest previously known algorithms.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/76359.76368</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithms ; Applied sciences ; Circulation ; Cost engineering ; Dynamics ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Networks ; Operational research and scientific management ; Operational research. Management science ; Polynomials ; Pushing ; Trees</subject><ispartof>Journal of the ACM, 1989-10, Vol.36 (4), p.873-886</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-67b35f24910ce1449bec67b6c415bfb9e4ee9708f29a852403ab3dabea9bb1a93</citedby><cites>FETCH-LOGICAL-c390t-67b35f24910ce1449bec67b6c415bfb9e4ee9708f29a852403ab3dabea9bb1a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6668656$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GOLDBERG, A. V</creatorcontrib><creatorcontrib>TARJAN, R. E</creatorcontrib><title>Finding minimum-cost circulations by canceling negative cycles</title><title>Journal of the ACM</title><description>A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and canceling it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number of iterations in this algorithm. This gives a very simple strongly polynomial algorithm that uses no scaling. A variant of the algorithm that uses dynamic trees runs in Ο( nm (log n )min{log( nC ), m log n }) time on a network of n vertices, m arcs, and arc costs of maximum absolute value C . This bound is comparable to those of the fastest previously known algorithms.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Circulation</subject><subject>Cost engineering</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Polynomials</subject><subject>Pushing</subject><subject>Trees</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsn_8AeRATZmmy-L4IUq0LBi4K3kKSzJbIfNdkV-u9Na_HoZYZ5eWYYHoQuCZ4RwvidFJTrWa5CHaEJ4VyWkvKPYzTBGLOSM0JO0VlKn3nEFZYTdL8I3Sp066INXWjHtvR9Ggofoh8bO4S-S4XbFt52Hpod1sE6x99Q-K1vIJ2jk9o2CS4OfYreF49v8-dy-fr0Mn9Ylp5qPJRCOsrrimmCPRDGtAOfM-EZ4a52GhiAlljVlbaKVwxT6-jKOrDaOWI1naLr37ub2H-NkAbThpRfamwH_ZhMpTStpBYZvPkXJAorLLmiOKO3v6iPfUoRarOJobVxawg2O51mr9PsdWb66nDYJm-bOmYlIf2tCCGU4IL-AJ5Uc-4</recordid><startdate>19891001</startdate><enddate>19891001</enddate><creator>GOLDBERG, A. V</creator><creator>TARJAN, R. E</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19891001</creationdate><title>Finding minimum-cost circulations by canceling negative cycles</title><author>GOLDBERG, A. V ; TARJAN, R. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-67b35f24910ce1449bec67b6c415bfb9e4ee9708f29a852403ab3dabea9bb1a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Circulation</topic><topic>Cost engineering</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Polynomials</topic><topic>Pushing</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOLDBERG, A. V</creatorcontrib><creatorcontrib>TARJAN, R. E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOLDBERG, A. V</au><au>TARJAN, R. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding minimum-cost circulations by canceling negative cycles</atitle><jtitle>Journal of the ACM</jtitle><date>1989-10-01</date><risdate>1989</risdate><volume>36</volume><issue>4</issue><spage>873</spage><epage>886</epage><pages>873-886</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and canceling it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number of iterations in this algorithm. This gives a very simple strongly polynomial algorithm that uses no scaling. A variant of the algorithm that uses dynamic trees runs in Ο( nm (log n )min{log( nC ), m log n }) time on a network of n vertices, m arcs, and arc costs of maximum absolute value C . This bound is comparable to those of the fastest previously known algorithms.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/76359.76368</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 1989-10, Vol.36 (4), p.873-886
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_miscellaneous_28932796
source ACM Digital Library
subjects Algorithms
Applied sciences
Circulation
Cost engineering
Dynamics
Exact sciences and technology
Flows in networks. Combinatorial problems
Networks
Operational research and scientific management
Operational research. Management science
Polynomials
Pushing
Trees
title Finding minimum-cost circulations by canceling negative cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20minimum-cost%20circulations%20by%20canceling%20negative%20cycles&rft.jtitle=Journal%20of%20the%20ACM&rft.au=GOLDBERG,%20A.%20V&rft.date=1989-10-01&rft.volume=36&rft.issue=4&rft.spage=873&rft.epage=886&rft.pages=873-886&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/76359.76368&rft_dat=%3Cproquest_cross%3E1808075830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808075830&rft_id=info:pmid/&rfr_iscdi=true