Finding minimum-cost circulations by canceling negative cycles
A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and canceling it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 1989-10, Vol.36 (4), p.873-886 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 886 |
---|---|
container_issue | 4 |
container_start_page | 873 |
container_title | Journal of the ACM |
container_volume | 36 |
creator | GOLDBERG, A. V TARJAN, R. E |
description | A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and
canceling
it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number of iterations in this algorithm. This gives a very simple strongly polynomial algorithm that uses no scaling. A variant of the algorithm that uses dynamic trees runs in Ο(
nm
(log
n
)min{log(
nC
),
m
log
n
}) time on a network of
n
vertices,
m
arcs, and arc costs of maximum absolute value
C
. This bound is comparable to those of the fastest previously known algorithms. |
doi_str_mv | 10.1145/76359.76368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28932796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808075830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-67b35f24910ce1449bec67b6c415bfb9e4ee9708f29a852403ab3dabea9bb1a93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsn_8AeRATZmmy-L4IUq0LBi4K3kKSzJbIfNdkV-u9Na_HoZYZ5eWYYHoQuCZ4RwvidFJTrWa5CHaEJ4VyWkvKPYzTBGLOSM0JO0VlKn3nEFZYTdL8I3Sp066INXWjHtvR9Ggofoh8bO4S-S4XbFt52Hpod1sE6x99Q-K1vIJ2jk9o2CS4OfYreF49v8-dy-fr0Mn9Ylp5qPJRCOsrrimmCPRDGtAOfM-EZ4a52GhiAlljVlbaKVwxT6-jKOrDaOWI1naLr37ub2H-NkAbThpRfamwH_ZhMpTStpBYZvPkXJAorLLmiOKO3v6iPfUoRarOJobVxawg2O51mr9PsdWb66nDYJm-bOmYlIf2tCCGU4IL-AJ5Uc-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808075830</pqid></control><display><type>article</type><title>Finding minimum-cost circulations by canceling negative cycles</title><source>ACM Digital Library</source><creator>GOLDBERG, A. V ; TARJAN, R. E</creator><creatorcontrib>GOLDBERG, A. V ; TARJAN, R. E</creatorcontrib><description>A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and
canceling
it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number of iterations in this algorithm. This gives a very simple strongly polynomial algorithm that uses no scaling. A variant of the algorithm that uses dynamic trees runs in Ο(
nm
(log
n
)min{log(
nC
),
m
log
n
}) time on a network of
n
vertices,
m
arcs, and arc costs of maximum absolute value
C
. This bound is comparable to those of the fastest previously known algorithms.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/76359.76368</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithms ; Applied sciences ; Circulation ; Cost engineering ; Dynamics ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Networks ; Operational research and scientific management ; Operational research. Management science ; Polynomials ; Pushing ; Trees</subject><ispartof>Journal of the ACM, 1989-10, Vol.36 (4), p.873-886</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-67b35f24910ce1449bec67b6c415bfb9e4ee9708f29a852403ab3dabea9bb1a93</citedby><cites>FETCH-LOGICAL-c390t-67b35f24910ce1449bec67b6c415bfb9e4ee9708f29a852403ab3dabea9bb1a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6668656$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GOLDBERG, A. V</creatorcontrib><creatorcontrib>TARJAN, R. E</creatorcontrib><title>Finding minimum-cost circulations by canceling negative cycles</title><title>Journal of the ACM</title><description>A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and
canceling
it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number of iterations in this algorithm. This gives a very simple strongly polynomial algorithm that uses no scaling. A variant of the algorithm that uses dynamic trees runs in Ο(
nm
(log
n
)min{log(
nC
),
m
log
n
}) time on a network of
n
vertices,
m
arcs, and arc costs of maximum absolute value
C
. This bound is comparable to those of the fastest previously known algorithms.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Circulation</subject><subject>Cost engineering</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Polynomials</subject><subject>Pushing</subject><subject>Trees</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsn_8AeRATZmmy-L4IUq0LBi4K3kKSzJbIfNdkV-u9Na_HoZYZ5eWYYHoQuCZ4RwvidFJTrWa5CHaEJ4VyWkvKPYzTBGLOSM0JO0VlKn3nEFZYTdL8I3Sp066INXWjHtvR9Ggofoh8bO4S-S4XbFt52Hpod1sE6x99Q-K1vIJ2jk9o2CS4OfYreF49v8-dy-fr0Mn9Ylp5qPJRCOsrrimmCPRDGtAOfM-EZ4a52GhiAlljVlbaKVwxT6-jKOrDaOWI1naLr37ub2H-NkAbThpRfamwH_ZhMpTStpBYZvPkXJAorLLmiOKO3v6iPfUoRarOJobVxawg2O51mr9PsdWb66nDYJm-bOmYlIf2tCCGU4IL-AJ5Uc-4</recordid><startdate>19891001</startdate><enddate>19891001</enddate><creator>GOLDBERG, A. V</creator><creator>TARJAN, R. E</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19891001</creationdate><title>Finding minimum-cost circulations by canceling negative cycles</title><author>GOLDBERG, A. V ; TARJAN, R. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-67b35f24910ce1449bec67b6c415bfb9e4ee9708f29a852403ab3dabea9bb1a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Circulation</topic><topic>Cost engineering</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Polynomials</topic><topic>Pushing</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOLDBERG, A. V</creatorcontrib><creatorcontrib>TARJAN, R. E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOLDBERG, A. V</au><au>TARJAN, R. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding minimum-cost circulations by canceling negative cycles</atitle><jtitle>Journal of the ACM</jtitle><date>1989-10-01</date><risdate>1989</risdate><volume>36</volume><issue>4</issue><spage>873</spage><epage>886</epage><pages>873-886</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>A classical algorithm for finding a minimum-cost circulation consists of repeatedly finding a residual cycle of negative cost and
canceling
it by pushing enough flow around the cycle to saturate an arc. We show that a judicious choice of cycles for canceling leads to a polynomial bound on the number of iterations in this algorithm. This gives a very simple strongly polynomial algorithm that uses no scaling. A variant of the algorithm that uses dynamic trees runs in Ο(
nm
(log
n
)min{log(
nC
),
m
log
n
}) time on a network of
n
vertices,
m
arcs, and arc costs of maximum absolute value
C
. This bound is comparable to those of the fastest previously known algorithms.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/76359.76368</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 1989-10, Vol.36 (4), p.873-886 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_miscellaneous_28932796 |
source | ACM Digital Library |
subjects | Algorithms Applied sciences Circulation Cost engineering Dynamics Exact sciences and technology Flows in networks. Combinatorial problems Networks Operational research and scientific management Operational research. Management science Polynomials Pushing Trees |
title | Finding minimum-cost circulations by canceling negative cycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20minimum-cost%20circulations%20by%20canceling%20negative%20cycles&rft.jtitle=Journal%20of%20the%20ACM&rft.au=GOLDBERG,%20A.%20V&rft.date=1989-10-01&rft.volume=36&rft.issue=4&rft.spage=873&rft.epage=886&rft.pages=873-886&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/76359.76368&rft_dat=%3Cproquest_cross%3E1808075830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808075830&rft_id=info:pmid/&rfr_iscdi=true |