Microwave enhanced synthesis of chitosan- graft-polyacrylamide

Chitosan- graft-polyacrylamide (Ch- g-PAM) was synthesized without any radical initiator or catalyst using microwave (MW) irradiation. Under optimal grafting conditions, 169% grafting was observed at 80% MW power in 1.16 min. Conventionally under similar conditions a maximum grafting of 82% could be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2006-01, Vol.47 (1), p.254-260
Hauptverfasser: Singh, Vandana, Tiwari, Ashutosh, Tripathi, Devendra Narayan, Sanghi, Rashmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chitosan- graft-polyacrylamide (Ch- g-PAM) was synthesized without any radical initiator or catalyst using microwave (MW) irradiation. Under optimal grafting conditions, 169% grafting was observed at 80% MW power in 1.16 min. Conventionally under similar conditions a maximum grafting of 82% could be achieved in 1 h using K 2S 2O 8/ascorbic acid as redox initiator coupled with Ag + ions as catalyst and atmospheric oxygen as co-catalyst on a thermostatic water bath at 35±0.2 °C. The representative microwave synthesized graft copolymer was characterized by Fourier transform-infrared spectroscopy, thermo gravimetric analysis and X-ray diffraction measurement, taking chitosan as a reference. The effects of reaction variables as monomer/chitosan concentration, MW power and exposure time on the graft co-polymerization were studied. A probable free radical mechanism for grafting under microwaves has been proposed. The solubility pH for the grafted samples with different extent of grafting was monitored. The adsorption capacity of chitosan was much enhanced after grafting. The microwave synthesized Ch- g-PAM in comparison to that prepared conventionally was found to have much more adsorption ability for Ca 2+ and Zn 2+ ions in aqueous solution.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2005.10.101