H[infon] strong stabilization

This note presents a technique for designing stable H({infinity} ) controllers. Similar to some methods in the existing literature, the proposed method also uses the parameterization of all suboptimal H ({infinity}) controllers so that the stable H({infinity}) design problem can be (conservatively)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2001-12, Vol.46 (12), p.1968-1972
Hauptverfasser: Campos-Delgado, D U, Zhou, K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1972
container_issue 12
container_start_page 1968
container_title IEEE transactions on automatic control
container_volume 46
creator Campos-Delgado, D U
Zhou, K
description This note presents a technique for designing stable H({infinity} ) controllers. Similar to some methods in the existing literature, the proposed method also uses the parameterization of all suboptimal H ({infinity}) controllers so that the stable H({infinity}) design problem can be (conservatively) converted into another 2-block standard H({infinity}) problem. However, a weighting function is introduced in this method to alleviate the conservativeness of the previous formulations. It is further shown that the resulting high-order controller can be significantly reduced by a two-step reduction algorithm. Numerical examples are presented to demonstrate the effectiveness of the proposed method
doi_str_mv 10.1109/9.975502
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28930546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453790591</sourcerecordid><originalsourceid>FETCH-LOGICAL-p188t-6004f4bd9e6d1a79d6c83c44bbbbb02e856f73f8a25df2df17c920a1376e7b253</originalsourceid><addsrcrecordid>eNqNjz1LxEAURQdRMK6Cf0AQC7us783nm1IWdYUFG61EwiSZkSxxZs0kjb_eiFY2epvDhcOFy9gpwhIR7JVdWqMU8D1WoFJUcsXFPisAkErLSR-yo5y3c9VSYsHO1s9dDCm-nOdxSPF1hqu7vvtwY5fiMTsIrs_-5IcL9nR787hal5uHu_vV9abcIdFYagAZZN1ar1t0xra6IdFIWX8FuCelgxGBHFdt4G1A01gODoXR3tRciQW7_N7dDel98nms3rrc-L530acpV5ysACX1P8TZQ4l_i9poA_Psgl38ErdpGuL8tiKyxEFaLT4BZgdk8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889820496</pqid></control><display><type>article</type><title>H[infon] strong stabilization</title><source>IEEE Electronic Library (IEL)</source><creator>Campos-Delgado, D U ; Zhou, K</creator><creatorcontrib>Campos-Delgado, D U ; Zhou, K</creatorcontrib><description>This note presents a technique for designing stable H({infinity} ) controllers. Similar to some methods in the existing literature, the proposed method also uses the parameterization of all suboptimal H ({infinity}) controllers so that the stable H({infinity}) design problem can be (conservatively) converted into another 2-block standard H({infinity}) problem. However, a weighting function is introduced in this method to alleviate the conservativeness of the previous formulations. It is further shown that the resulting high-order controller can be significantly reduced by a two-step reduction algorithm. Numerical examples are presented to demonstrate the effectiveness of the proposed method</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.975502</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><ispartof>IEEE transactions on automatic control, 2001-12, Vol.46 (12), p.1968-1972</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Campos-Delgado, D U</creatorcontrib><creatorcontrib>Zhou, K</creatorcontrib><title>H[infon] strong stabilization</title><title>IEEE transactions on automatic control</title><description>This note presents a technique for designing stable H({infinity} ) controllers. Similar to some methods in the existing literature, the proposed method also uses the parameterization of all suboptimal H ({infinity}) controllers so that the stable H({infinity}) design problem can be (conservatively) converted into another 2-block standard H({infinity}) problem. However, a weighting function is introduced in this method to alleviate the conservativeness of the previous formulations. It is further shown that the resulting high-order controller can be significantly reduced by a two-step reduction algorithm. Numerical examples are presented to demonstrate the effectiveness of the proposed method</description><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNjz1LxEAURQdRMK6Cf0AQC7us783nm1IWdYUFG61EwiSZkSxxZs0kjb_eiFY2epvDhcOFy9gpwhIR7JVdWqMU8D1WoFJUcsXFPisAkErLSR-yo5y3c9VSYsHO1s9dDCm-nOdxSPF1hqu7vvtwY5fiMTsIrs_-5IcL9nR787hal5uHu_vV9abcIdFYagAZZN1ar1t0xra6IdFIWX8FuCelgxGBHFdt4G1A01gODoXR3tRciQW7_N7dDel98nms3rrc-L530acpV5ysACX1P8TZQ4l_i9poA_Psgl38ErdpGuL8tiKyxEFaLT4BZgdk8w</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Campos-Delgado, D U</creator><creator>Zhou, K</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20011201</creationdate><title>H[infon] strong stabilization</title><author>Campos-Delgado, D U ; Zhou, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p188t-6004f4bd9e6d1a79d6c83c44bbbbb02e856f73f8a25df2df17c920a1376e7b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos-Delgado, D U</creatorcontrib><creatorcontrib>Zhou, K</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campos-Delgado, D U</au><au>Zhou, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H[infon] strong stabilization</atitle><jtitle>IEEE transactions on automatic control</jtitle><date>2001-12-01</date><risdate>2001</risdate><volume>46</volume><issue>12</issue><spage>1968</spage><epage>1972</epage><pages>1968-1972</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><abstract>This note presents a technique for designing stable H({infinity} ) controllers. Similar to some methods in the existing literature, the proposed method also uses the parameterization of all suboptimal H ({infinity}) controllers so that the stable H({infinity}) design problem can be (conservatively) converted into another 2-block standard H({infinity}) problem. However, a weighting function is introduced in this method to alleviate the conservativeness of the previous formulations. It is further shown that the resulting high-order controller can be significantly reduced by a two-step reduction algorithm. Numerical examples are presented to demonstrate the effectiveness of the proposed method</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/9.975502</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2001-12, Vol.46 (12), p.1968-1972
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28930546
source IEEE Electronic Library (IEL)
title H[infon] strong stabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H%5Binfon%5D%20strong%20stabilization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Campos-Delgado,%20D%20U&rft.date=2001-12-01&rft.volume=46&rft.issue=12&rft.spage=1968&rft.epage=1972&rft.pages=1968-1972&rft.issn=0018-9286&rft.eissn=1558-2523&rft_id=info:doi/10.1109/9.975502&rft_dat=%3Cproquest%3E2453790591%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889820496&rft_id=info:pmid/&rfr_iscdi=true